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Introduction

This book is intended for the Mathematical Olympiad students who wish to pre-
pare for the study of inequalities, a topic now of frequent use at various levels
of mathematical competitions. In this volume we present both classic inequalities
and the more useful inequalities for confronting and solving optimization prob-
lems. An important part of this book deals with geometric inequalities and this
fact makes a big difference with respect to most of the books that deal with this
topic in the mathematical olympiad.

The book has been organized in four chapters which have each of them a
different character. Chapter 1 is dedicated to present basic inequalities. Most of
them are numerical inequalities generally lacking any geometric meaning. How-
ever, where it is possible to provide a geometric interpretation, we include it as
we go along. We emphasize the importance of some of these inequalities, such as
the inequality between the arithmetic mean and the geometric mean, the Cauchy-
Schwarz inequality, the rearrangement inequality, the Jensen inequality, the Muir-
head theorem, among others. For all these, besides giving the proof, we present
several examples that show how to use them in mathematical olympiad prob-
lems. We also emphasize how the substitution strategy is used to deduce several
inequalities.

The main topic in Chapter 2 is the use of geometric inequalities. There we ap-
ply basic numerical inequalities, as described in Chapter 1, to geometric problems
to provide examples of how they are used. We also work out inequalities which
have a strong geometric content, starting with basic facts, such as the triangle
inequality and the Euler inequality. We introduce examples where the symmetri-
cal properties of the variables help to solve some problems. Among these, we pay
special attention to the Ravi transformation and the correspondence between an
inequality in terms of the side lengths of a triangle a, b, c and the inequalities
that correspond to the terms s, r and R, the semiperimeter, the inradius and the
circumradius of a triangle, respectively. We also include several classic geometric
problems, indicating the methods used to solve them.

In Chapter 3 we present one hundred and twenty inequality problems that
have appeared in recent events, covering all levels, from the national and up to
the regional and international olympiad competitions.
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In Chapter 4 we provide solutions to each of the two hundred and ten exer-
cises in Chapters 1 and 2, and to the problems presented in Chapter 3. Most of
the solutions to exercises or problems that have appeared in international math-
ematical competitions were taken from the official solutions provided at the time
of the competitions. This is why we do not give individual credits for them.

Some of the exercises and problems concerning inequalities can be solved us-
ing different techniques, therefore you will find some exercises repeated in different
sections. This indicates that the technique outlined in the corresponding section
can be used as a tool for solving the particular exercise.

The material presented in this book has been accumulated over the last fif-
teen years mainly during work sessions with the students that won the national
contest of the Mexican Mathematical Olympiad. These students were develop-
ing their skills and mathematical knowledge in preparation for the international
competitions in which Mexico participates.

We would like to thank Rafael Mart́ınez Enŕıquez, Leonardo Ignacio Mart́ınez
Sandoval, David Mireles Morales, Jesús Rodŕıguez Viorato and Pablo Soberón
Bravo for their careful revision of the text and helpful comments for the improve-
ment of the writing and the mathematical content.
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Chapter 1

Numerical Inequalities

1.1 Order in the real numbers

A very important property of the real numbers is that they have an order. The
order of the real numbers enables us to compare two numbers and to decide which
one of them is greater or whether they are equal. Let us assume that the real
numbers system contains a set P , which we will call the set of positive numbers,
and we will express in symbols x > 0 if x belongs to P . We will also assume the
following three properties.

Property 1.1.1. Every real number x has one and only one of the following prop-
erties:

(i) x = 0,

(ii) x ∈ P (that is, x > 0),

(iii) −x ∈ P (that is, −x > 0).

Property 1.1.2. If x, y ∈ P , then x+y ∈ P (in symbols x > 0, y > 0⇒ x+y > 0).

Property 1.1.3. If x, y ∈ P , then xy ∈ P (in symbols x > 0, y > 0 ⇒ xy > 0).

If we take the “real line” as the geometric representation of the real numbers,
by this we mean a directed line where the number “0”has been located and serves
to divide the real line into two parts, the positive numbers being on the side
containing the number one “1”. In general the number one is set on the right hand
side of 0. The number 1 is positive, because if it were negative, since it has the
property that 1 · x = x for every x, we would have that any number x �= 0 would
satisfy x ∈ P and −x ∈ P , which contradicts property 1.1.1.

Now we can define the relation a is greater than b if a − b ∈ P (in symbols
a > b). Similarly, a is smaller than b if b− a ∈ P (in symbols a < b). Observe that
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a < b is equivalent to b > a. We can also define that a is smaller than or equal to
b if a < b or a = b (using symbols a ≤ b).

We will denote by R the set of real numbers and by R+ the set P of positive
real numbers.

Example 1.1.4. (i) If a < b and c is any number, then a + c < b + c.

(ii) If a < b and c > 0, then ac < bc.

In fact, to prove (i) we see that a + c < b + c ⇔ (b + c) − (a + c) > 0 ⇔
b − a > 0 ⇔ a < b. To prove (ii), we proceed as follows: a < b ⇒ b − a > 0 and
since c > 0, then (b− a)c > 0, therefore bc− ac > 0 and then ac < bc.

Exercise 1.1. Given two numbers a and b, exactly one of the following assertions
is satisfied, a = b, a > b or a < b.

Exercise 1.2. Prove the following assertions.

(i) a < 0, b < 0⇒ ab > 0.

(ii) a < 0, b > 0⇒ ab < 0.

(iii) a < b, b < c⇒ a < c.

(iv) a < b, c < d⇒ a + c < b + d.

(v) a < b ⇒ −b < −a.

(vi) a > 0 ⇒ 1
a

> 0.

(vii) a < 0 ⇒ 1
a

< 0.

(viii) a > 0, b > 0⇒ a

b
> 0.

(ix) 0 < a < b, 0 < c < d ⇒ ac < bd.

(x) a > 1 ⇒ a2 > a.

(xi) 0 < a < 1 ⇒ a2 < a.

Exercise 1.3. (i) If a > 0, b > 0 and a2 < b2, then a < b.

(ii) If b > 0, we have that a
b > 1 if and only if a > b.

The absolute value of a real number x, which is denoted by |x|, is defined as

|x| =
{

x if x ≥ 0,

−x ifx < 0.

Geometrically, |x| is the distance of the number x (on the real line) from the origin
0. Also, |a− b| is the distance between the real numbers a and b on the real line.
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Exercise 1.4. For any real numbers x, a and b, the following hold.

(i) |x| ≥ 0, and is equal to zero only when x = 0.

(ii) |−x| = |x|.
(iii) |x|2 = x2.

(iv) |ab| = |a| |b|.

(v)
∣∣∣a
b

∣∣∣ =
|a|
|b| , with b �= 0.

Proposition 1.1.5 (Triangle inequality). The triangle inequality states that for any
pair of real numbers a and b,

|a + b| ≤ |a|+ |b| .
Moreover, the equality holds if and only if ab ≥ 0.

Proof. Both sides of the inequality are positive; then using Exercise 1.3 it is suffi-
cient to verify that |a + b|2 ≤ (|a|+ |b|)2:

|a + b|2 = (a + b)2 = a2 + 2ab + b2 = |a|2 + 2ab + |b|2 ≤ |a|2 + 2 |ab|+ |b|2

= |a|2 + 2 |a| |b|+ |b|2 = (|a|+ |b|)2 .

In the previous relations we observe only one inequality, which is obvious since
ab ≤ |ab|. Note that, when ab ≥ 0, we can deduce that ab = |ab| = |a| |b|, and then
the equality holds. �

The general form of the triangle inequality for real numbers x1, x2, . . . , xn,
is

|x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|.
The equality holds when all xi’s have the same sign. This can be proved in a similar
way or by the use of induction. Another version of the last inequality, which is
used very often, is the following:

|±x1 ± x2 ± · · · ± xn| ≤ |x1|+ |x2|+ · · ·+ |xn|.
Exercise 1.5. Let x, y, a, b be real numbers, prove that

(i) |x| ≤ b⇔ −b ≤ x ≤ b,

(ii) ||a| − |b|| ≤ |a− b|,
(iii) x2 + xy + y2 ≥ 0,

(iv) x > 0, y > 0 ⇒ x2 − xy + y2 > 0.

Exercise 1.6. For real numbers a, b, c, prove that

|a|+ |b|+ |c| − |a + b| − |b + c| − |c + a|+ |a + b + c| ≥ 0.
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Exercise 1.7. Let a, b be real numbers such that 0 ≤ a ≤ b ≤ 1. Prove that

(i) 0 ≤ b− a

1− ab
≤ 1,

(ii) 0 ≤ a

1 + b
+

b

1 + a
≤ 1,

(iii) 0 ≤ ab2 − ba2 ≤ 1
4
.

Exercise 1.8. Prove that if n, m are positive integers, then m
n <

√
2 if and only if√

2 < m+2n
m+n .

Exercise 1.9. If a ≥ b, x ≥ y, then ax + by ≥ ay + bx.

Exercise 1.10. If x, y > 0, then
√

x2

y +
√

y2

x ≥ √x +
√

y.

Exercise 1.11. (Czech and Slovak Republics, 2004) Let a, b, c, d be real numbers
with a + d = b + c, prove that

(a− b)(c− d) + (a− c)(b− d) + (d− a)(b− c) ≥ 0.

Exercise 1.12. Let f(a, b, c, d) = (a − b)2 + (b − c)2 + (c − d)2 + (d − a)2. For
a < b < c < d, prove that

f(a, c, b, d) > f(a, b, c, d) > f(a, b, d, c).

Exercise 1.13. (IMO, 1960) For which real values of x the following inequality
holds:

4x2

(1 −√1 + 2x)2
< 2x + 9?

Exercise 1.14. Prove that for any positive integer n, the fractional part of
√

4n2 + n
is smaller than 1

4 .

Exercise 1.15. (Short list IMO, 1996) Let a, b, c be positive real numbers such
that abc = 1. Prove that

ab

a5 + b5 + ab
+

bc

b5 + c5 + bc
+

ca

c5 + a5 + ca
≤ 1.

1.2 The quadratic function ax2 + 2bx + c

One very useful inequality for the real numbers is x2 ≥ 0, which is valid for any
real number x (it is sufficient to consider properties 1.1.1, 1.1.3 and Exercise 1.2
of the previous section). The use of this inequality leads to deducing many other
inequalities. In particular, we can use it to find the maximum or minimum of a
quadratic function ax2 + 2bx + c. These quadratic functions appear frequently in
optimization problems or in inequalities.
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One common example consists in proving that if a > 0, the quadratic function
ax2 + 2bx + c will have its minimum at x = − b

a and the minimum value is c− b2

a .
In fact,

ax2 + 2bx + c = a

(
x2 + 2

b

a
x +

b2

a2

)
+ c− b2

a

= a

(
x +

b

a

)2

+ c− b2

a
.

Since
(
x + b

a

)2 ≥ 0 and the minimum value of this expression, zero, is attained
when x = − b

a , we conclude that the minimum value of the quadratic function is
c− b2

a .
If a < 0, the quadratic function ax2+2bx+c will have a maximum at x = − b

a

and its value at this point is c− b2

a . In fact, since ax2+2bx+c = a
(
x + b

a

)2
+c− b2

a

and since a
(
x + b

a

)2 ≤ 0 (because a < 0), the greatest value of this last expression
is zero, thus the quadratic function is always less than or equal to c − b2

a and
assumes this value at the point x = − b

a .

Example 1.2.1. If x, y are positive numbers with x + y = 2a, then the product xy
is maximal when x = y = a.

If x + y = 2a, then y = 2a − x. Hence, xy = x(2a − x) = −x2 + 2ax =
−(x− a)2 + a2 has a maximum value when x = a, and then y = x = a.

This can be interpreted geometrically as “of all the rectangles with fixed
perimeter, the one with the greatest area is the square”. In fact, if x, y are the
lengths of the sides of the rectangle, the perimeter is 2(x + y) = 4a, and its area
is xy, which is maximized when x = y = a.

Example 1.2.2. If x, y are positive numbers with xy = 1, the sum x+y is minimal
when x = y = 1.

If xy = 1, then y = 1
x . It follows that x + y = x + 1

x =
(√

x− 1√
x

)2

+ 2,

and then x + y is minimal when
√

x − 1√
x

= 0, that is, when x = 1. Therefore,
x = y = 1.

This can also be interpreted geometrically in the following way, “of all the
rectangles with area 1, the square has the smallest perimeter”. In fact, if x, y are
the lengths of the sides of the rectangle, its area is xy = 1 and its perimeter is

2(x + y) = 2
(
x + 1

x

)
= 2

{(√
x− 1√

x

)2

+ 2
}
≥ 4. Moreover, the perimeter is 4 if

and only if
√

x− 1√
x

= 0, that is, when x = y = 1.

Example 1.2.3. For any positive number x, we have x + 1
x ≥ 2.
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Observe that x + 1
x =

(√
x− 1√

x

)2

+ 2 ≥ 2. Moreover, the equality holds if

and only if
√

x− 1√
x

= 0, that is, when x = 1.

Example 1.2.4. If a, b > 0, then a
b + b

a ≥ 2, and the equality holds if and only if
a = b.

It is enough to consider the previous example with x = a
b .

Example 1.2.5. Given a, b, c > 0, it is possible to construct a triangle with sides
of length a, b, c if and only if pa2 + qb2 > pqc2 for any p, q with p + q = 1.

Remember that a, b and c are the lengths of the sides of a triangle if and
only if a + b > c, a + c > b and b + c > a.

Let

Q = pa2 + qb2 − pqc2 = pa2 + (1− p)b2 − p(1− p)c2 = c2p2 + (a2 − b2 − c2)p + b2,

therefore Q is a quadratic function1 in p and

Q > 0 ⇔ � =
[(

a2 − b2 − c2
)2 − 4b2c2

]
< 0

⇔ [
a2 − b2 − c2 − 2bc

] [
a2 − b2 − c2 + 2bc

]
< 0

⇔ [
a2 − (b + c)2

] [
a2 − (b− c)2

]
< 0

⇔ [a + b + c] [a− b− c] [a− b + c] [a + b− c] < 0
⇔ [b + c− a][c + a− b][a + b− c] > 0.

Now, [b + c− a][c + a− b][a + b− c] > 0 if the three factors are positive or if one of
them is positive and the other two are negative. However, the latter is impossible,
because if [b + c − a] < 0 and [c + a − b] < 0, we would have, adding these two
inequalities, that c < 0, which is false. Therefore the three factors are necessarily
positive.

Exercise 1.16. Suppose the polynomial ax2 + bx + c satisfies the following: a > 0,
a + b + c ≥ 0, a− b + c ≥ 0, a− c ≥ 0 and b2 − 4ac ≥ 0. Prove that the roots are
real and that they belong to the interval −1 ≤ x ≤ 1.

Exercise 1.17. If a, b, c are positive numbers, prove that it is not possible for the
inequalities a(1− b) > 1

4 , b(1− c) > 1
4 , c(1− a) > 1

4 to hold at the same time.

1A quadratic function ax2 + bx + c with a > 0 is positive when its discriminant Δ = b2 − 4ac

is negative, in fact, this follows from ax2 + bx + c = a(x + b
2a

)2 + 4ac−b2

4a
. Remember that the

roots are
−b±

√
b2−4ac

2a
, and they are real when Δ ≥ 0, otherwise they are not real roots, and

then ax2 + bx + c will have the same sign; this expression will be positive if a > 0.
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1.3 A fundamental inequality,
arithmetic mean-geometric mean

The first inequality that we consider, fundamental in optimization problems, is
the inequality between the arithmetic mean and the geometric mean of two non-
negative numbers a and b, which is expressed as

a + b

2
≥
√

ab, (AM-GM).

Moreover, the equality holds if and only if a = b.
The numbers a+b

2 and
√

ab are known as the arithmetic mean and the ge-
ometric mean of a and b, respectively. To prove the inequality we only need to
observe that

a + b

2
−
√

ab =
a + b− 2

√
ab

2
=

1
2

(√
a−

√
b
)2

≥ 0.

And the equality holds if and only if
√

a =
√

b, that is, when a = b.

Exercise 1.18. For x ≥ 0, prove that 1 + x ≥ 2
√

x.

Exercise 1.19. For x > 0, prove that x + 1
x ≥ 2.

Exercise 1.20. For x, y ∈ R+, prove that x2 + y2 ≥ 2xy.

Exercise 1.21. For x, y ∈ R+, prove that 2(x2 + y2) ≥ (x + y)2.

Exercise 1.22. For x, y ∈ R+, prove that 1
x + 1

y ≥ 4
x+y .

Exercise 1.23. For a, b, x ∈ R+, prove that ax + b
x ≥ 2

√
ab.

Exercise 1.24. If a, b > 0, then a
b + b

a ≥ 2.

Exercise 1.25. If 0 < b ≤ a, then 1
8

(a−b)2

a ≤ a+b
2 −√ab ≤ 1

8
(a−b)2

b .

Now, we will present a geometric and a visual proof of the following inequal-
ities, for x, y > 0,

2
1
x + 1

y

≤ √xy ≤ x + y

2
. (1.1)

x y

h

g

A

B C
D

E

O
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Let x = BD, y = DC and let us construct a semicircle of diameter BC =
x + y. Let A be the point where the perpendicular to BC in D intersects the
semicircle and let E be the perpendicular projection from D to the radius AO.
Let us write AD = h and AE = g. Since ABD and CAD are similar right triangles,
we deduce that

h

y
=

x

h
, then h =

√
xy.

Also, since AOD and ADE are similar right triangles, we have

g√
xy

=
√

xy
x+y

2

, then g =
2xy

x + y
=

2(
1
x + 1

y

) .

Finally, the geometry tells us that in a right triangle, the length of one leg is
always smaller than the length of the hypotenuse. Hence, g ≤ h ≤ x+y

2 , which can
be written as

2
1
x + 1

y

≤ √xy ≤ x + y

2
.

The number 2
1
x + 1

y

is known as the harmonic mean of x and y, and the left inequality

in (1.1) is known as the inequality between the harmonic mean and the geometric
mean.

Some inequalities can be proved through the multiple application of a simple
inequality and the use of a good idea to separate the problem into parts that are
easier to deal with, a method which is often used to solve the following exercises.

Exercise 1.26. For x, y, z ∈ R+, (x + y)(y + z)(z + x) ≥ 8xyz.

Exercise 1.27. For x, y, z ∈ R, x2 + y2 + z2 ≥ xy + yz + zx.

Exercise 1.28. For x, y, z ∈ R+, xy + yz + zx ≥ x
√

yz + y
√

zx + z
√

xy.

Exercise 1.29. For x, y ∈ R, x2 + y2 + 1 ≥ xy + x + y.

Exercise 1.30. For x, y, z ∈ R+, 1
x + 1

y + 1
z ≥ 1√

xy + 1√
yz + 1√

zx
.

Exercise 1.31. For x, y, z ∈ R+, xy
z + yz

x + zx
y ≥ x + y + z.

Exercise 1.32. For x, y, z ∈ R, x2 + y2 + z2 ≥ x
√

y2 + z2 + y
√

x2 + z2.

The inequality between the arithmetic mean and the geometric mean can
be extended to more numbers. For instance, we can prove the following inequa-
lity between the arithmetic mean and the geometric mean of four non-negative
numbers a, b, c, d, expressed as a+b+c+d

4 ≥ 4
√

abcd, in the following way:

a + b + c + d

4
=

1
2

(
a + b

2
+

c + d

2

)
≥ 1

2

(√
ab +

√
cd

)
≥

√√
ab
√

cd = 4
√

abcd.
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Observe that we have used the AM-GM inequality three times for two numbers
in each case: with a and b, with c and d, and with

√
ab and

√
cd. Moreover, the

equality holds if and only if a = b, c = d and ab = cd, that is, when the numbers
satisfy a = b = c = d.

Exercise 1.33. For x, y ∈ R, x4 + y4 + 8 ≥ 8xy.

Exercise 1.34. For a, b, c, d ∈ R+, (a + b + c + d)
(

1
a + 1

b + 1
c + 1

d

) ≥ 16.

Exercise 1.35. For a, b, c, d ∈ R+, a
b + b

c + c
d + d

a ≥ 4.

A useful trick also exists for checking that the inequality a+b+c
3 ≥ 3

√
abc

is true for any three non-negative numbers a, b and c. Consider the following
four numbers a, b, c and d = 3

√
abc. Since the AM-GM inequality holds for four

numbers, we have a+b+c+d
4 ≥ 4

√
abcd = 4

√
d3d = d. Then a+b+c

4 ≥ d − 1
4d = 3

4d.
Hence, a+b+c

3 ≥ d = 3
√

abc.

These ideas can be used to justify the general version of the inequality for n
non-negative numbers. If a1, a2, . . . , an are n non-negative numbers, we take the
numbers A and G as

A =
a1 + a2 + · · ·+ an

n
and G = n

√
a1a2 · · ·an.

These numbers are known as the arithmetic mean and the geometric mean of the
numbers a1, a2, . . . , an, respectively.

Theorem 1.3.1 (The AM-GM inequality).

a1 + a2 + · · ·+ an

n
≥ n
√

a1a2 · · ·an.

First proof (Cauchy). Let Pn be the statement G ≤ A, for n numbers. We will
proceed by mathematical induction on n, but this is an induction of the following
type.

(1) We prove that the statement is true for 2 numbers, that is, P2 is true.

(2) We prove that Pn ⇒ Pn−1.

(3) We prove that Pn ⇒ P2n.

When (1), (2) and (3) are verified, all the assertions Pn with n ≥ 2 are shown
to be true. Now, we will prove these statements.

(1) This has already been done in the first part of the section.

(2) Let a1, . . . , an−1 be non-negative numbers and let g = n−1
√

a1 · · · an−1. Using
this number and the numbers we already have, i.e., a1, . . . , an−1, we get n
numbers to which we apply Pn,

a1 + · · ·+ an−1 + g

n
≥ n
√

a1a2 · · ·an−1g = n
√

gn−1 · g = g.
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We deduce that a1+· · ·+an−1+g ≥ ng, and then it follows that a1+···+an−1
n−1 ≥

g, therefore Pn−1 is true.

(3) Let a1, a2, . . . , a2n be non-negative numbers, then

a1 + a2 + · · ·+ a2n = (a1 + a2) + (a3 + a4) + · · ·+ (a2n−1 + a2n)

≥ 2
(√

a1a2 +
√

a3a4 + · · ·+√a2n−1a2n

)
≥ 2n

(√
a1a2

√
a3a4 · · · √a2n−1a2n

) 1
n

= 2n (a1a2 · · ·a2n)
1
2n .

We have applied the statement P2 several times, and we have also applied the
statement Pn to the numbers

√
a1a2,

√
a3a4, . . . , √a2n−1a2n. �

Second proof. Let A = a1+···+an

n . We take two numbers ai, one smaller than A
and the other greater than A (if they exist), say a1 = A− h and a2 = A + k, with
h, k > 0.

We exchange a1 and a2 for two numbers that increase the product and fix
the sum, defined as

a′1 = A, a′2 = A + k − h.

Since a′1 + a′2 = A + A + k − h = A− h + A + k = a1 + a2, clearly a′1 + a′2 + a3 +
· · ·+ an = a1 + a2 + a3 + · · ·+ an, but a′1a′2 = A(A + k− h) = A2 + A(k− h) and
a1a2 = (A+k)(A−h) = A2 +A(k−h)−hk, then a′1a

′
2 > a1a2 and thus it follows

that a′1a
′
2a3 · · ·an > a1a2a3 · · · an.

If A = a′1 = a′2 = a3 = · · · = an, there is nothing left to prove (the equality
holds), otherwise two elements will exist, one greater than A and the other one
smaller than A and the argument is repeated. Since every time we perform this
operation we create a number equal to A, this process can not be used more than
n times. �

Example 1.3.2. Find the maximum value of x(1− x3) for 0 ≤ x ≤ 1.

The idea of the proof is to exchange the product for another one in such
a way that the sum of the elements involved in the new product is constant. If
y = x(1− x3), it is clear that the right side of 3y3 = 3x3(1− x3)(1− x3)(1− x3),
expressed as the product of four numbers 3x3, (1− x3), (1− x3) and (1− x3), has
a constant sum equal to 3. The AM-GM inequality for four numbers tells us that

3y3 ≤
(

3x3 + 3(1− x3)
4

)4

=
(

3
4

)4

.

Thus y ≤ 3
4 3√4

. Moreover, the maximum value is reached using 3x3 = 1− x3, that
is, if x = 1

3√4
.
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Exercise 1.36. Let xi > 0, i = 1, . . . , n. Prove that

(x1 + x2 + · · ·+ xn)
(

1
x1

+
1
x2

+ · · ·+ 1
xn

)
≥ n2.

Exercise 1.37. If {a1, . . . , an} is a permutation of {b1, . . . , bn} ⊂ R+, then

a1

b1
+

a2

b2
+ · · ·+ an

bn
≥ n and

b1

a1
+

b2

a2
+ · · ·+ bn

an
≥ n.

Exercise 1.38. If a > 1, then an − 1 > n
(
a

n+1
2 − a

n−1
2

)
.

Exercise 1.39. If a, b, c > 0 and (1 + a)(1 + b)(1 + c) = 8, then abc ≤ 1.

Exercise 1.40. If a, b, c > 0, then a3

b + b3

c + c3

a ≥ ab + bc + ca.

Exercise 1.41. For non-negative real numbers a, b, c, prove that

a2b2 + b2c2 + c2a2 ≥ abc(a + b + c).

Exercise 1.42. If a, b, c > 0, then(
a2b + b2c + c2a

) (
ab2 + bc2 + ca2

) ≥ 9a2b2c2.

Exercise 1.43. If a, b, c > 0 satisfy that abc = 1, prove that

1 + ab

1 + a
+

1 + bc

1 + b
+

1 + ac

1 + c
≥ 3.

Exercise 1.44. If a, b, c > 0, prove that

1
a

+
1
b

+
1
c
≥ 2

(
1

a + b
+

1
b + c

+
1

c + a

)
≥ 9

a + b + c
.

Exercise 1.45. If Hn = 1 + 1
2 + · · ·+ 1

n , prove that

n(n + 1)
1
n < n + Hn for n ≥ 2.

Exercise 1.46. Let x1, x2, . . . , xn > 0 such that 1
1+x1

+ · · ·+ 1
1+xn

= 1. Prove that

x1x2 · · ·xn ≥ (n− 1)n
.

Exercise 1.47. (Short list IMO, 1998) Let a1, a2, . . . , an be positive numbers with
a1 + a2 + · · ·+ an < 1, prove that

a1a2 · · · an [1− (a1 + a2 + · · ·+ an)]
(a1 + a2 + · · ·+ an) (1− a1) (1− a2) · · · (1− an)

≤ 1
nn+1

.
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Exercise 1.48. Let a1, a2, . . . , an be positive numbers such that 1
1+a1

+· · ·+ 1
1+an

=
1. Prove that

√
a1 + · · ·+√an ≥ (n− 1)

(
1√
a1

+ · · ·+ 1√
an

)
.

Exercise 1.49. (APMO, 1991) Let a1, a2, . . . , an, b1, b2, . . . , bn be positive numbers
with a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn. Prove that

a2
1

a1 + b1
+ · · ·+ a2

n

an + bn
≥ 1

2
(a1 + · · ·+ an).

Exercise 1.50. Let a, b, c be positive numbers, prove that

1
a3 + b3 + abc

+
1

b3 + c3 + abc
+

1
c3 + a3 + abc

≤ 1
abc

.

Exercise 1.51. Let a, b, c be positive numbers with a + b + c = 1, prove that(
1
a

+ 1
)(

1
b

+ 1
)(

1
c

+ 1
)
≥ 64.

Exercise 1.52. Let a, b, c be positive numbers with a + b + c = 1, prove that(
1
a
− 1

)(
1
b
− 1

)(
1
c
− 1

)
≥ 8.

Exercise 1.53. (Czech and Slovak Republics, 2005) Let a, b, c be positive numbers
that satisfy abc = 1, prove that

a

(a + 1)(b + 1)
+

b

(b + 1)(c + 1)
+

c

(c + 1)(a + 1)
≥ 3

4
.

Exercise 1.54. Let a, b, c be positive numbers for which 1
1+a + 1

1+b + 1
1+c = 1.

Prove that
abc ≥ 8.

Exercise 1.55. Let a, b, c be positive numbers, prove that

2ab

a + b
+

2bc

b + c
+

2ca

c + a
≤ a + b + c.

Exercise 1.56. Let a1, a2, . . . , an, b1, b2, . . . , bn be positive numbers, prove that
n∑

i=1

1
aibi

n∑
i=1

(ai + bi)
2 ≥ 4n2.

Exercise 1.57. (Russia, 1991) For all non-negative real numbers x, y, z, prove that

(x + y + z)2

3
≥ x

√
yz + y

√
zx + z

√
xy.
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Exercise 1.58. (Russia, 1992) For all positive real numbers x, y, z, prove that

x4 + y4 + z2 ≥
√

8xyz.

Exercise 1.59. (Russia, 1992) For any real numbers x, y > 1, prove that

x2

y − 1
+

y2

x− 1
≥ 8.

1.4 A wonderful inequality:
The rearrangement inequality

Consider two collections of real numbers in increasing order,

a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn.

For any permutation (a′1, a
′
2, . . . , a

′
n) of (a1, a2, . . . , an), it happens that

a1b1 + a2b2 + · · ·+ anbn ≥ a′1b1 + a′2b2 + · · ·+ a′nbn (1.2)
≥ anb1 + an−1b2 + · · ·+ a1bn. (1.3)

Moreover, the equality in (1.2) holds if and only if (a′1, a′2, . . . , a′n)=(a1, a2, . . . , an).
And the equality in (1.3) holds if and only if (a′1, a

′
2, . . . , a

′
n) = (an, an−1, . . . , a1).

Inequality (1.2) is known as the rearrangement inequality.

Corollary 1.4.1. For any permutation (a′1, a
′
2, . . . , a

′
n) of (a1, a2, . . . , an), it follows

that
a2
1 + a2

2 + · · ·+ a2
n ≥ a1a

′
1 + a2a

′
2 + · · ·+ ana′n.

Corollary 1.4.2. For any permutation (a′1, a′2, . . . , a′n) of (a1, a2, . . . , an), it follows
that

a′1
a1

+
a′2
a2

+ · · ·+ a′n
an
≥ n.

Proof (of the rearrangement inequality). Suppose that b1 ≤ b2 ≤ · · · ≤ bn. Let

S = a1b1 + a2b2 + · · ·+ arbr + · · ·+ asbs + · · ·+ anbn,

S′ = a1b1 + a2b2 + · · ·+ asbr + · · ·+ arbs + · · ·+ anbn.

The difference between S and S′ is that the coefficients of br and bs, where r < s,
are switched. Hence

S − S′ = arbr + asbs − asbr − arbs = (bs − br)(as − ar).

Thus, we have that S ≥ S′ if and only if as ≥ ar. Repeating this process we get
the result that the sum S is maximal when a1 ≤ a2 ≤ · · · ≤ an. �
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Example 1.4.3. (IMO, 1975) Consider two collections of numbers x1 ≤ x2 ≤ · · · ≤
xn and y1 ≤ y2 ≤ · · · ≤ yn, and one permutation (z1, z2, . . . , zn) of (y1, y2, . . . , yn).
Prove that

(x1 − y1)2 + · · ·+ (xn − yn)2 ≤ (x1 − z1)
2 + · · ·+ (xn − zn)2 .

By squaring and rearranging this last inequality, we find that it is equivalent
to

n∑
i=1

x2
i − 2

n∑
i=1

xiyi +
n∑

i=1

y2
i ≤

n∑
i=1

x2
i − 2

n∑
i=1

xizi +
n∑

i=1

z2
i ,

but since
∑n

i=1 y2
i =

∑n
i=1 z2

i , then the inequality we have to prove turns to be
equivalent to

n∑
i=1

xizi ≤
n∑

i=1

xiyi,

which in turn is inequality (1.2).

Example 1.4.4. (IMO, 1978) Let x1, x2, . . . , xn be distinct positive integers, prove
that

x1

12
+

x2

22
+ · · ·+ xn

n2
≥ 1

1
+

1
2

+ · · ·+ 1
n

.

Let (a1, a2, . . . , an) be a permutation of (x1, x2, . . . , xn) with a1 ≤ a2 ≤
· · · ≤ an and let (b1, b2, . . . , bn) =

(
1

n2 , 1
(n−1)2

, . . . , 1
12

)
; that is, bi = 1

(n+1−i)2 for
i = 1, . . . , n.

Consider the permutation (a′1, a
′
2, . . . , a

′
n) of (a1, a2, . . . , an) defined by a′i =

xn+1−i, for i = 1, . . . , n. Using inequality (1.3) we can argue that

x1

12
+

x2

22
+ · · ·+ xn

n2
= a′1b1 + a′2b2 + · · ·+ a′nbn

≥ anb1 + an−1b2 + · · ·+ a1bn

= a1bn + a2bn−1 + · · ·+ anb1

=
a1

12
+

a2

22
+ · · ·+ an

n2
.

Since 1 ≤ a1, 2 ≤ a2, . . . , n ≤ an, we have that

x1

12
+

x2

22
+ · · ·+ xn

n2
≥ a1

12
+

a2

22
+ · · ·+ an

n2
≥ 1

12
+

2
22

+ · · ·+ n

n2
=

1
1

+
1
2

+ · · ·+ 1
n

.

Example 1.4.5. (IMO, 1964) Suppose that a, b, c are the lengths of the sides of a
triangle. Prove that

a2 (b + c− a) + b2 (a + c− b) + c2 (a + b− c) ≤ 3abc.
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Since the expression is a symmetric function of a, b and c, we can as-
sume, without loss of generality, that c ≤ b ≤ a. In this case, a (b + c− a) ≤
b (a + c− b) ≤ c (a + b− c) .

For instance, the first inequality is proved in the following way:

a (b + c− a) ≤ b (a + c− b) ⇔ ab + ac− a2 ≤ ab + bc− b2

⇔ (a− b) c ≤ (a + b) (a− b)
⇔ (a− b) (a + b− c) ≥ 0.

By (1.3) of the rearrangement inequality, we have

a2(b+c−a)+b2(c+a−b)+c2(a+b−c) ≤ ba(b+c−a)+cb(c+a−b)+ac(a+b−c),

a2(b+c−a)+b2(c+a−b)+c2(a+b−c) ≤ ca(b+c−a)+ab(c+a−b)+bc(a+b−c).

Therefore, 2
[
a2(b + c− a) + b2(c + a− b) + c2(a + b− c)

] ≤ 6abc.

Example 1.4.6. (IMO, 1983) Let a, b and c be the lengths of the sides of a triangle.
Prove that

a2b(a− b) + b2c(b− c) + c2a (c− a) ≥ 0.

Consider the case c ≤ b ≤ a (the other cases are similar).

As in the previous example, we have that a(b+c−a) ≤ b(a+c−b) ≤ c(a+b−c)
and since 1

a ≤ 1
b ≤ 1

c , using Inequality (1.2) leads us to

1
a
a(b + c− a) +

1
b
b(c + a− b) +

1
c
c(a + b− c)

≥ 1
c
a(b + c− a) +

1
a
b(c + a− b) +

1
b
c(a + b− c).

Therefore,

a + b + c ≥ a (b− a)
c

+
b(c− b)

a
+

c (a− c)
b

+ a + b + c.

It follows that a(b−a)
c + b(c−b)

a + c(a−c)
b ≤ 0. Multiplying by abc, we obtain

a2b (a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

Example 1.4.7 (Cauchy-Schwarz inequality). For real numbers x1, . . . , xn, y1, . . . ,
yn, the following inequality holds:(

n∑
i=1

xiyi

)2

≤
(

n∑
i=1

x2
i

)(
n∑

i=1

y2
i

)
.

The equality holds if and only if there exists some λ ∈ R with xi = λyi for all
i = 1, 2, . . . , n.
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If x1 = x2 = · · · = xn = 0 or y1 = y2 = · · · = yn = 0, the result is evident.
Otherwise, let S =

√∑n
i=1 x2

i and T =
√∑n

i=1 y2
i , where it is clear that S, T �= 0.

Take ai = xi

S and an+i = yi

T for i = 1, 2, . . . , n. Using Corollary 1.4.1,

2 =
n∑

i=1

x2
i

S2
+

n∑
i=1

y2
i

T 2
=

2n∑
i=1

a2
i

≥ a1an+1 + a2an+2 + · · ·+ ana2n + an+1a1 + · · ·+ a2nan

= 2
x1y1 + x2y2 + · · ·+ xnyn

ST
.

The equality holds if and only if ai = an+i for i = 1, 2, . . . , n, or equivalently, if
and only if xi = S

T yi for i = 1, 2, . . . , n.
Another proof of the Cauchy-Schwarz inequality can be established using

Lagrange’s identity(
n∑

i=1

xiyi

)2

=
n∑

i=1

x2
i

n∑
i=1

y2
i −

1
2

n∑
i=1

n∑
j=1

(xiyj − xjyi)2.

The importance of the Cauchy-Schwarz inequality will be felt throughout the
remaining part of this book, as we will use it as a tool to solve many exercises and
problems proposed here.

Example 1.4.8 (Nesbitt’s inequality). For a, b, c ∈ R+, we have

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

Without loss of generality, we can assume that a ≤ b ≤ c, and then it follows
that a + b ≤ c + a ≤ b + c and 1

b+c ≤ 1
c+a ≤ 1

a+b .

Using the rearrangement inequality (1.2) twice, we obtain

a

b + c
+

b

c + a
+

c

a + b
≥ b

b + c
+

c

c + a
+

a

a + b
,

a

b + c
+

b

c + a
+

c

a + b
≥ c

b + c
+

a

c + a
+

b

a + b
.

Hence,

2
(

a

b + c
+

b

c + a
+

c

a + b

)
≥

(
b + c

b + c
+

c + a

c + a
+

a + b

a + b

)
= 3.

Another way to prove the inequality is using Inequality (1.3) twice,

c + a

b + c
+

a + b

c + a
+

b + c

a + b
≥ 3,

a + b

b + c
+

b + c

c + a
+

c + a

a + b
≥ 3.
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Then, after adding the two expressions, we get 2a+b+c
b+c + 2b+c+a

c+a + 2c+a+b
a+b ≥ 6,

therefore
2a

b + c
+

2b

c + a
+

2c

a + b
≥ 3.

Example 1.4.9. (IMO, 1995) Let a, b, c be positive real numbers with abc = 1.
Prove that

1
a3(b + c)

+
1

b3(c + a)
+

1
c3(a + b)

≥ 3
2
.

Without loss of generality, we can assume that c ≤ b ≤ a. Let x = 1
a , y = 1

b
and z = 1

c , thus

S =
1

a3(b + c)
+

1
b3(c + a)

+
1

c3(a + b)

=
x3

1
y

+
1
z

+
y3

1
z

+
1
x

+
z3

1
x

+
1
y

=
x2

y + z
+

y2

z + x
+

z2

x + y
.

Since x ≤ y ≤ z, we can deduce that x + y ≤ z + x ≤ y + z and also that
x

y+z ≤ y
z+x ≤ z

x+y . Using the rearrangement inequality (1.2), we show that

x2

y + z
+

y2

z + x
+

z2

x + y
≥ xy

y + z
+

yz

z + x
+

zx

x + y
,

x2

y + z
+

y2

z + x
+

z2

x + y
≥ xz

y + z
+

yx

z + x
+

zy

x + y
,

which in turn leads to 2S ≥ x + y + z ≥ 3 3
√

xyz = 3. Therefore, S ≥ 3
2 .

Example 1.4.10. (APMO, 1998) Let a, b, c ∈ R+, prove that

(
1 +

a

b

)(
1 +

b

c

)(
1 +

c

a

)
≥ 2

(
1 +

a + b + c
3
√

abc

)
.

Observe that(
1 +

a

b

)(
1 +

b

c

)(
1 +

c

a

)
≥ 2

(
1 +

a + b + c
3
√

abc

)

⇔ 1 +
(

a

b
+

b

c
+

c

a

)
+

(
a

c
+

c

b
+

b

a

)
+

abc

abc
≥ 2

(
1 +

a + b + c
3
√

abc

)

⇔ a

b
+

b

c
+

c

a
+

a

c
+

c

b
+

b

a
≥ 2(a + b + c)

3
√

abc
.
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Now we set a = x3, b = y3, c = z3. We need to prove that

x3

y3
+

y3

z3
+

z3

x3
+

x3

z3
+

z3

y3
+

y3

x3
≥ 2

(
x3 + y3 + z3

)
xyz

.

But, if we consider

(a1, a2, a3, a4, a5, a6) =
(

x

y
,
y

z
,
z

x
,
x

z
,
z

y
,
y

x

)
,

(a′1, a
′
2, a

′
3, a

′
4, a

′
5, a

′
6) =

(
y

z
,
z

x
,
x

y
,
z

y
,
y

x
,
x

z

)
,

(b1, b2, b3, b4, b5, b6) =
(

x2

y2
,
y2

z2
,
z2

x2
,
x2

z2
,
z2

y2
,
y2

x2

)
,

we are led to the following result:

x3

y3
+

y3

z3
+

z3

x3
+

x3

z3
+

z3

y3
+

y3

x3
≥ x2

y2

y

z
+

y2

z2

z

x
+

z2

x2

x

y
+

x2

z2

z

y
+

z2

y2

y

x
+

y2

x2

x

z

=
x2

yz
+

y2

zx
+

z2

xy
+

x2

zy
+

z2

yx
+

y2

xz

=
2
(
x3 + y3 + z3

)
xyz

.

Example 1.4.11 (Tchebyshev’s inequality). Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤
· · · ≤ bn, then

a1b1 + a2b2 + · · ·+ anbn

n
≥ a1 + a2 + · · ·+ an

n
· b1 + b2 + · · ·+ bn

n
.

Applying the rearrangement inequality several times, we get

a1b1 + · · ·+ anbn = a1b1 + a2b2 + · · ·+ anbn,

a1b1 + · · ·+ anbn ≥ a1b2 + a2b3 + · · ·+ anb1,

a1b1 + · · ·+ anbn ≥ a1b3 + a2b4 + · · ·+ anb2,

...
...

...
a1b1 + · · ·+ anbn ≥ a1bn + a2b1 + · · ·+ anbn−1,

and adding together all the expressions, we obtain

n (a1b1 + · · ·+ anbn) ≥ (a1 + · · ·+ an) (b1 + · · ·+ bn) .

The equality holds when a1 = a2 = · · · = an or b1 = b2 = · · · = bn.

Exercise 1.60. Any three positive real numbers a, b and c satisfy the following
inequality:

a3 + b3 + c3 ≥ a2b + b2c + c2a.



1.4 A wonderful inequality 19

Exercise 1.61. Any three positive real numbers a, b and c, with abc = 1, satisfy

a3 + b3 + c3 + (ab)3 + (bc)3 + (ca)3 ≥ 2(a2b + b2c + c2a).

Exercise 1.62. Any three positive real numbers a, b and c satisfy

a2

b2
+

b2

c2
+

c2

a2
≥ b

a
+

c

b
+

a

c
.

Exercise 1.63. Any three positive real numbers a, b and c satisfy

1
a2

+
1
b2

+
1
c2
≥ a + b + c

abc
.

Exercise 1.64. If a, b and c are the lengths of the sides of a triangle, prove that

a

b + c− a
+

b

c + a− b
+

c

a + b− c
≥ 3.

Exercise 1.65. If a1, a2, . . . , an ∈ R+ and s = a1 + a2 + · · ·+ an, then

a1

s− a1
+

a2

s− a2
+ · · ·+ an

s− an
≥ n

n− 1
.

Exercise 1.66. If a1, a2, . . . , an ∈ R+ and s = a1 + a2 + · · ·+ an, then

s

s− a1
+

s

s− a2
+ · · ·+ s

s− an
≥ n2

n− 1
.

Exercise 1.67. If a1, a2, . . . , an ∈ R+ and a1 + a2 + · · ·+ an = 1, then

a1

2− a1
+

a2

2− a2
+ · · ·+ an

2− an
≥ n

2n− 1
.

Exercise 1.68. (Quadratic mean-arithmetic mean inequality) Let x1, . . . , xn ∈
R+, then √

x2
1 + x2

2 + · · ·+ x2
n

n
≥ x1 + x2 + · · ·+ xn

n
.

Exercise 1.69. For positive real numbers a, b, c such that a+ b+ c = 1, prove that

ab + bc + ca ≤ 1
3
.

Exercise 1.70. (Harmonic, geometric and arithmetic mean) Let x1, . . . , xn ∈ R+,
prove that

n
1
x1

+ 1
x2

+ · · ·+ 1
xn

≤ n
√

x1x2 · · ·xn ≤ x1 + x2 + · · ·+ xn

n
.

And the equalities hold if and only if x1 = x2 = · · · = xn.
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Exercise 1.71. Let a1, a2, . . . , an be positive numbers with a1a2 · · · an = 1. Prove
that

an−1
1 + an−1

2 + · · ·+ an−1
n ≥ 1

a1
+

1
a2

+ · · ·+ 1
an

.

Exercise 1.72. (China, 1989) Let a1, a2, . . . , an be positive numbers such that
a1 + a2 + · · ·+ an = 1. Prove that

a1√
1− a1

+ · · ·+ an√
1− an

≥ 1√
n− 1

(
√

a1 + · · ·+√an).

Exercise 1.73. Let a, b and c be positive numbers such that a + b + c = 1. Prove
that

(i)
√

4a + 1 +
√

4b + 1 +
√

4c + 1 < 5,

(ii)
√

4a + 1 +
√

4b + 1 +
√

4c + 1 ≤ √21.

Exercise 1.74. Let a, b, c, d ∈ R+ with ab + bc + cd + da = 1, prove that

a3

b + c + d
+

b3

a + c + d
+

c3

a + b + d
+

d3

a + b + c
≥ 1

3
.

Exercise 1.75. Let a, b, c be positive numbers with abc = 1, prove that

a

b
+

b

c
+

c

a
≥ a + b + c.

Exercise 1.76. Let x1, x2, . . . , xn (n > 2) be real numbers such that the sum of
any n−1 of them is greater than the element left out of the sum. Set s =

∑n
k=1 xk.

Prove that
n∑

k=1

x2
k

s− 2xk
≥ s

n− 2
.

1.5 Convex functions

A function f : [a, b] → R is called convex in the interval I = [a, b] if for any
t ∈ [0, 1] and for all a ≤ x < y ≤ b, the following inequality holds:

f(ty + (1− t)x) ≤ tf(y) + (1− t)f(x). (1.4)

Geometrically, the inequality in the definition means that the graph of f
between x and y is below the segment which joins the points (x, f(x)) and (y, f(y)).
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x y

(x, f(x))
(y, f(y))

In fact, the equation of the line joining the points (x, f(x)) and (y, f(y)) is
expressed as

L(s) = f(x) +
f(y)− f(x)

y − x
(s− x).

Then, evaluating at the point s = ty + (1 − t)x, we get

L(ty + (1− t)x) = f(x) +
f(y)− f(x)

y − x
(t(y − x)) = f(x) + t(f(y)− f(x))

= tf(y) + (1− t)f(x).

Hence, Inequality (1.4) is equivalent to

f(ty + (1− t)x) ≤ L(ty + (1 − t)x).

Proposition 1.5.1. (1) If f is convex in the interval [a, b], then it is convex in
any subinterval [x, y] ⊂ [a, b] .

(2) If f is convex in [a, b], then for any x, y ∈ [a, b], we have that

f

(
x + y

2

)
≤ 1

2
(f(x) + f(y)). (1.5)

(3) (Jensen’s inequality) If f is convex in [a, b], then for any t1, . . . , tn ∈ [0, 1],
with

∑n
i=1 ti = 1, and for x1, . . . , xn ∈ [a, b], we can deduce that

f(t1x1 + · · ·+ tnxn) ≤ t1f(x1) + · · ·+ tnf(xn).

(4) In particular, for x1, . . . , xn ∈ [a, b], we can establish that

f

(
x1 + · · ·+ xn

n

)
≤ 1

n
(f(x1) + · · ·+ f(xn)) .
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Proof. (1) We leave the proof as an exercise for the reader.
(2) It is sufficient to choose t = 1

2 in (1.4).
(3) We have

f (t1x1 + · · ·+ tnxn) = f((1− tn) (
t1

1− tn
x1 + · · ·+ tn−1

1− tn
xn−1) + tnxn)

≤ (1− tn) f

(
t1

1− tn
x1 + · · ·+ tn−1

1− tn
xn−1

)
+ tnf(xn), by convexity

≤ (1− tn)
{

t1
1− tn

f(x1) + · · ·+ tn−1

1− tn
f(xn−1)

}
+ tnf(xn), by induction

= t1f(x1) + · · ·+ tnf(xn).

(4) We only need to apply (3) using t1 = t2 = · · · = tn = 1
n . �

Observations 1.5.2. (i) We can see that (4) holds true only under the assumption
that f satisfies the relation f

(
x+y

2

) ≤ f(x)+f(y)
2 for any x, y ∈ [a, b].

(ii) We can observe that (3) is true for t1, . . . , tn ∈ [0, 1] rational numbers, only
under the condition that f satisfies the relation f

(
x+y

2

) ≤ f(x)+f(y)
2 for any

x, y ∈ [a, b].

We will prove (i) using induction. Let us call Pn the assertion

f

(
x1 + · · ·+ xn

n

)
≤ 1

n
(f(x1) + · · ·+ f(xn))

for x1, . . . , xn ∈ [a, b]. It is clear that P1 and P2 are true.
Now, we will show that Pn ⇒ Pn−1.
Let x1, . . . , xn ∈ [a, b] and let y = x1+···+xn−1

n−1 . Since Pn is true, we can
establish that

f

(
x1 + · · ·+ xn−1 + y

n

)
≤ 1

n
f (x1) + · · ·+ 1

n
f(xn−1) +

1
n

f(y).

But the left side is f(y), therefore n · f(y) ≤ f (x1) + · · ·+ f(xn−1) + f(y), and

f(y) ≤ 1
n− 1

(f (x1) + · · ·+ f(xn−1)) .

Finally, we can observe that Pn ⇒ P2n.

Let D = f
(

x1+···+xn+xn+1+···+x2n

2n

)
= f

(
u+v

2

)
, where u = x1+···+xn

n and

v = xn+1+···+x2n

n .

Since f
(

u+v
2

) ≤ 1
2 (f(u) + f(v)), we have that

D ≤ 1
2
(f(u) + f(v)) =

1
2

(
f

(
x1 + · · ·+ xn

n

)
+ f

(
xn+1 + · · ·+ x2n

n

))
≤ 1

2n
(f (x1) + · · ·+ f(xn) + f(xn+1) + · · ·+ f(x2n)) ,
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where we have used twice the statement that Pn is true.

To prove (ii), our starting point will be the assertion that f
(

x1+···+xn

n

) ≤
1
n (f(x1) + · · ·+ f(xn)) for x1, . . . , xn ∈ [a, b] and n ∈ N.

Let t1 = r1
s1

, . . . , tn = rn

sn
be rational numbers in [0, 1] with

∑n
i=1 ti = 1.

If m is the least common multiple of the si’s, then ti = pi

m with pi ∈ N and∑n
i=1 pi = m, hence

f(t1x1 + · · ·+ tnxn) = f
(p1

m
x1 + · · ·+ pn

m
xn

)

= f

⎛
⎜⎝ 1

m

⎡
⎢⎣(x1 + · · ·+ x1)︸ ︷︷ ︸

p1− terms

+ · · ·+ (xn + · · ·+ xn)︸ ︷︷ ︸
pn− terms

⎤
⎥⎦
⎞
⎟⎠

≤ 1
m

⎡
⎢⎣(f(x1) + · · ·+ f(x1))︸ ︷︷ ︸

p1− terms

+ · · ·+ (f(xn) + · · ·+ f(xn))︸ ︷︷ ︸
pn− terms

⎤
⎥⎦

=
p1

m
f(x1) + · · ·+ pn

m
f(xn)

= t1f(x1) + · · ·+ tnf(xn).

Observation 1.5.3. If f : [a, b]→ R is a continuous2 function on [a, b] and satisfies
hypothesis (2) of the proposition, then f is convex.

We have seen that if f satisfies (2), then

f(qx + (1− q)y) ≤ qf(x) + (1− q)f(y)

for any x, y ∈ [a, b] and q ∈ [0, 1] rational number. Since any real number t can
be approximated by a sequence of rational numbers qn, and if these qn belong to
[0, 1], we can deduce that

f(qnx + (1 − qn)y) ≤ qnf(x) + (1− qn)f(y).

Now, by using the continuity of f and taking the limit, we get

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).

We say that a function f : [a, b]→ R is concave if −f is convex.

2A function f : [a, b] → R is continuous at a point c ∈ [a, b] if lim
x→c

f(x) = f(c), and f is

continuous on [a, b] if it is continous in every point of the interval. Equivalently, f is continuous
at c if for every sequence of points {cn} that converges to c, the sequence {f(cn)} converges to
f(c).
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Observation 1.5.4. A function f : [a, b]→ R is concave if and only if

f(ty + (1− t)x) ≥ tf(y) + (1− t)f(x) for 0 ≤ t ≤ 1 and a ≤ x < y ≤ b.

Now, we will consider some criteria to decide whether a function is convex.

Criterion 1.5.5. A function f : [a, b] → R is convex if and only if the set {(x, y)|
a ≤ x ≤ b, f(x) ≤ y} is convex.3

Proof. Suppose that f is convex and let A = (x1, y1) and B = (x2, y2) be two
points in the set U = {(x, y) | a ≤ x ≤ b, f(x) ≤ y}. To prove that tB + (1− t)A =
(tx2 + (1− t)x1, ty2 + (1− t)y1) belongs to U , it is sufficient to demonstrate that
a ≤ tx2 +(1− t)x1 ≤ b and f(tx2 +(1− t)x1) ≤ ty2 +(1− t)y1. The first condition
follows immediately since x1 and x2 belong to [a, b].

As for the second condition, since f is convex, it follows that

f(tx2 + (1− t)x1) ≤ tf(x2) + (1− t)f(x1).

Moreover, since f(x2) ≤ y2 and f(x1) ≤ y1, we can deduce that

f(tx2 + (1− t)x1) ≤ ty2 + (1− t)y1.

Conversely, we will observe that f is convex if U is convex.
Let x1, x2 ∈ [a, b] and let us consider A = (x1, f(x1)) and B = (x2, f(x2)).

Clearly A and B belong to U , and since U is convex, the segment that joins them
belongs to U , that is, the points of the form tB + (1− t)A for t ∈ [0, 1]. Thus,

(tx2 + (1− t)x1, tf(x2) + (1− t)f(x1)) ∈ U ,

but this implies that f(tx2 + (1 − t)x1) ≤ tf(x2) + (1 − t)f(x1). Hence f is
convex. �

Criterion 1.5.6. A function f : [a, b] → R is convex if and only if, for each x0 ∈
[a, b], the function P (x) = f(x)−f(x0)

x−x0
is non-decreasing for x �= x0.

Proof. Suppose that f is convex. To prove that P (x) is non-decreasing, we take
x < y and then we show that P (x) ≤ P (y). One of the following three situations
can arise: x0 < x < y, x < x0 < y or x < y < x0. Let us consider the first of these

3A subset C of the plane is convex if for any pair of points A, B in C, the segment determined
by these points belongs entirely to C. Since the segment between A and B is the set of points
of the form tB + (1 − t)A, with 0 ≤ t ≤ 1, the condition is that any point described by this
expression belongs to C.
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cases and then the other two can be proved in a similar way. First note that

P (x) ≤ P (y) ⇔ f(x)− f(x0)
x− x0

≤ f(y)− f(x0)
y − x0

⇔ (f(x)− f(x0))(y − x0) ≤ (f(y)− f(x0))(x − x0)
⇔ f(x)(y − x0) ≤ f(y)(x− x0) + f(x0)(y − x)

⇔ f(x) ≤ f(y)
x− x0

y − x0
+ f(x0)

y − x

y − x0

⇔ f

(
x− x0

y − x0
y +

y − x

y − x0
x0

)
≤ f(y)

x− x0

y − x0
+ f(x0)

y − x

y − x0
.

The result follows immediately. �
Criterion 1.5.7. If the function f : [a, b] → R is differentiable4 with a non-
decreasing derivative, then f is convex. In particular, if f is twice differentiable
and f ′′(x) ≥ 0, then the function is convex.

Proof. It is clear that f ′′(x) ≥ 0, for x ∈ [a, b], implies that f ′(x) is non-decreasing.
We see that if f ′(x) is non-decreasing, the function is convex.

Let x = tb+(1− t)a be a point on [a, b]. Recalling the mean value theorem,5

we know there exist c ∈ (a, x) and d ∈ (x, b) such that

f(x)− f(a) = (x− a)f ′(c) = t(b− a)f ′(c),
f(b)− f(x) = (b− x)f ′(d) = (1− t)(b − a)f ′(d).

Then, since f ′(x) is non-decreasing, we can deduce that

(1− t) (f(x)− f(a)) = t(1− t)(b− a)f ′(c) ≤ t(1− t)(b− a)f ′(d) = t(f(b)− f(x)).

After rearranging terms we get

f(x) ≤ tf(b) + (1− t)f(a). �

Let us present one geometric interpretation of convexity (and concavity).

Let x, y, z be points in the interval [a, b] with x < y < z. If the vertices of
the triangle XY Z have coordinates X = (x, f(x)), Y = (y, f(y)), Z = (z, f(z)),
then the area of the triangle is given by

Δ =
1
2

det A, where A =

⎛
⎝ 1 x f(x)

1 y f(y)
1 z f(z)

⎞
⎠ .

4A function f : [a, b] → R is differentiable in a point c ∈ [a, b] if the function f ′(c) =

lim
x→c

f(x)−f(c)
x−c

exists and f is differentiable in A ⊂ [a, b] if it is differentiable in every point of A.
5Mean value theorem. For a continuous function f : [a, b] → R, which is differentiable in (a, b),

there exists a number x ∈ (a, b) such that f ′(x)(b− a) = f(b) − f(a). See [21, page 169].
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The area can be positive or negative, this will depend on whether the triangle
XY Z is positively oriented (anticlockwise oriented) or negatively oriented. For a
convex function, we have that Δ > 0 and for a concave function, Δ < 0, as shown
in the following graphs.

x y z

(x, f(x))

(y, f(y))

(z, f(z))

x y z

(x, f(x))

(y, f(y))

(z, f(z))

In fact,

Δ > 0 ⇔ det A > 0

⇔ (z − y)f(x)− (z − x)f(y) + (y − x)f(z) > 0

⇔ f(y) <
z − y

z − x
f(x) +

y − x

z − x
f(z).

If we take t = y−x
z−x , we have 0 < t < 1, 1 − t = z−y

z−x , y = tz + (1 − t)x and
f(tz + (1− t)x) < tf(z) + (1− t)f(x).

Now, let us introduce several examples where convex functions are used to
establish inequalities.

Example 1.5.8. The function f(x) = xn, n ≥ 1, is convex in R+ and the function
f(x) = xn, with n even, is also convex in R.

This follows from the fact that f ′′(x) = n(n− 1)xn−2 ≥ 0 in each case.

As an application of this we get the following.

(i) Since
(

a+b
2

)2 ≤ a2+b2

2 , we can deduce that a+b
2 ≤

√
a2+b2

2 , which is the
inequality between the arithmetic mean and the quadratic mean.

(ii) Since
(

a+b
2

)n ≤ an+bn

2 , we can deduce that an + bn ≥ 1
2n−1

, for a and b

positive numbers such that a + b = 1.

(iii) If a and b are positive numbers,
(
1 + a

b

)n +
(
1 + b

a

)n ≥ 2n+1. This follows
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from

2n = f(2) ≤ f

(
a+b

a + a+b
b

2

)
≤ 1

2

[
f
(
1 +

a

b

)
+ f

(
1 +

b

a

)]

=
1
2

[(
1 +

a

b

)n

+
(

1 +
b

a

)n]
.

Example 1.5.9. The exponential function f(x) = ex is convex in R, since f ′′(x) =
ex > 0, for every x ∈ R.

Let us observe several ways in which this property can be used.

(i) (Weighted AM-GM inequality) If x1, . . . , xn, t1, . . . , tn are positive numbers
and

∑n
i=1 ti = 1, then

xt1
1 · · ·xtn

n ≤ t1x1 + · · ·+ tnxn.

In fact, since xti

i = eti log xi and ex is convex, we can deduce that

xt1
1 · · ·xtn

n = et1 log x1 · · · etn log xn = et1 log x1+···+tn log xn

≤ t1e
log x1 + · · ·+ tnelog xn = t1x1 + · · ·+ tnxn.

In particular, if we take ti = 1
n , for 1 ≤ i ≤ n, we can produce another proof

of the inequality between the arithmetic mean and the geometric mean for n
numbers.

(ii) (Young’s inequality) Let x, y be positive real numbers. If a, b > 0 satisfy the
condition 1

a + 1
b = 1, then xy ≤ 1

axa + 1
b yb.

We only need to apply part (i) as follows:

xy = (xa)
1
a
(
yb

) 1
b ≤ 1

a
xa +

1
b
yb.

(iii) (Hölder’s inequality) Let x1, x2, . . . , xn, y1, y2, . . . , yn be positive numbers
and a, b > 0 such that 1

a + 1
b = 1, then

n∑
i=1

xiyi ≤
(

n∑
i=1

xa
i

)1/a (
n∑

i=1

yb
i

)1/b

.

Let us first assume that
∑n

i=1 xa
i =

∑n
i=1 yb

i = 1.

Using part (ii), xiyi ≤ 1
axa

i + 1
b yb

i , then

n∑
i=1

xiyi ≤ 1
a

n∑
i=1

xa
i +

1
b

n∑
i=1

yb
i =

1
a

+
1
b

= 1.
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Now, suppose that
∑n

i=1 xa
i = A and

∑n
i=1 yb

i = B. Let us take x′i = xi

A1/a

and y′i = yi

B1/b . Since

n∑
i=1

(x′i)
a =

∑n
i=1 xa

i

A
= 1 and

n∑
i=1

(y′i)
b =

∑n
i=1 yb

i

B
= 1,

we can deduce that

1 ≥
n∑

i=1

x′iy
′
i =

n∑
i=1

xiyi

A1/aB1/b
=

1
A1/aB1/b

n∑
i=1

xiyi.

Therefore,
∑n

i=1 xiyi ≤ A1/aB1/b.

If we choose a = b = 2, we get the Cauchy-Schwarz inequality.

Let us introduce a consequence of Hölder’s inequality, which is a generaliza-
tion of the triangle inequality.

Example 1.5.10 (Minkowski’s inequality). Let a1, a2, . . . , an, b1, b2, . . . , bn be
positive numbers and p > 1, then

(
n∑

k=1

(ak + bk)p

) 1
p

≤
(

n∑
k=1

(ak)p

) 1
p

+

(
n∑

k=1

(bk)p

) 1
p

.

We note that

(ak + bk)p = ak(ak + bk)p−1 + bk(ak + bk)p−1,

so that
n∑

k=1

(ak + bk)p =
n∑

k=1

ak(ak + bk)p−1 +
n∑

k=1

bk(ak + bk)p−1. (1.6)

We apply Hölder’s inequality to each term of the sum on the right-hand side of
(1.6), with q such that 1

p + 1
q = 1, to get

n∑
k=1

ak(ak + bk)p−1 ≤
(

n∑
k=1

(ak)p

) 1
p
(

n∑
k=1

(ak + bk)q(p−1)

) 1
q

,

n∑
k=1

bk(ak + bk)p−1 ≤
(

n∑
k=1

(bk)p

) 1
p
(

n∑
k=1

(ak + bk)q(p−1)

) 1
q

.

Putting these inequalities into (1.6), and noting that q(p − 1) = p, yields the
required inequality. Note that Minkowski’s inequality is an equality if we allow
p = 1. For 0 < p < 1, the inequality is reversed.
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Example 1.5.11. (Short list IMO, 1998) If r1, . . . , rn are real numbers greater than
1, prove that

1
1 + r1

+ · · ·+ 1
1 + rn

≥ n
n
√

r1 · · · rn + 1
.

First note that the function f(x) = 1
1+ex is convex for R+, since f ′(x) =

−ex

(1+ex)2
and f ′′(x) = ex(ex−1)

(ex+1)3 ≥ 0 for x > 0.

Now, if ri > 1, then ri = exi for some xi > 0. Since f(x) = 1
1+ex is convex,

we can establish that

1

e(
x1+···+xn

n ) + 1
≤ 1

n

(
1

1 + ex1
+ · · ·+ 1

1 + exn

)
,

hence
n

n
√

r1 · · · rn + 1
≤ 1

1 + r1
+ · · ·+ 1

1 + rn
.

Example 1.5.12. (China, 1989) Prove that for any n real positive numbers x1, . . . ,
xn such that

∑n
i=1 xi = 1, we have

n∑
i=1

xi√
1− xi

≥
∑n

i=1

√
xi√

n− 1
.

We will use the fact that the function f(x) = x√
1−x

is convex in (0, 1), since
f ′′(x) > 0,

1
n

n∑
i=1

xi√
1− xi

=
1
n

n∑
i=1

f(xi) ≥ f

(
n∑

i=1

1
n

xi

)
= f

(
1
n

)
=

1√
n
√

n− 1
,

hence
n∑

i=1

xi√
1− xi

≥
√

n√
n− 1

.

It is left to prove that
∑n

i=1

√
xi ≤

√
n, but this follows from the Cauchy-Schwarz

inequality,
∑n

i=1

√
xi ≤

√∑n
i=1 xi

√∑n
i=1 1 =

√
n.

Example 1.5.13. (Hungary–Israel, 1999) Let k and l be two given positive integers,
and let aij , 1 ≤ i ≤ k and 1 ≤ j ≤ l, be kl given positive numbers. Prove that if
q ≥ p > 0, then

⎛
⎝ l∑

j=1

(
k∑

i=1

ap
ij

) q
p

⎞
⎠

1
q

≤

⎛
⎜⎝ k∑

i=1

⎛
⎝ l∑

j=1

aq
ij

⎞
⎠

p
q

⎞
⎟⎠

1
p

.
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Define bj =
∑k

i=1 ap
ij for j = 1, 2, . . . , l, and denote the left-hand side of the

required inequality by L and the right-hand side by R. Then

Lq =
l∑

j=1

b
q
p

j

=
l∑

j=1

(
b

q−p
p

j

(
k∑

i=1

ap
ij

))

=
k∑

i=1

⎛
⎝ l∑

j=1

b
q−p

p

j ap
ij

⎞
⎠ .

Using Hölder’s inequality we obtain

Lq ≤
k∑

i=1

⎡
⎢⎣
⎛
⎝ l∑

j=1

(
b

q−p
p

j

) q
q−p

⎞
⎠

q−p
q

⎛
⎝ l∑

j=1

(ap
ij)

q
p

⎞
⎠

p
q

⎤
⎥⎦

=
k∑

i=1

⎡
⎢⎣
⎛
⎝ l∑

j=1

b
q
p

j

⎞
⎠

q−p
q

⎛
⎝ l∑

j=1

aq
ij

⎞
⎠

p
q

⎤
⎥⎦

=

⎛
⎝ l∑

j=1

b
q
p

j

⎞
⎠

q−p
q

·

⎡
⎢⎣ k∑

i=1

⎛
⎝ l∑

j=1

aq
ij

⎞
⎠

p
q

⎤
⎥⎦ = Lq−pRp.

The inequality L ≤ R follows by dividing both sides of Lq ≤ Lq−pRp by Lq−p and
taking the p-th root.

Exercise 1.77. (i) For a, b ∈ R+, with a + b = 1, prove that(
a +

1
a

)2

+
(

b +
1
b

)2

≥ 25
2

.

(ii) For a, b, c ∈ R+, with a + b + c = 1, prove that(
a +

1
a

)2

+
(

b +
1
b

)2

+
(

c +
1
c

)2

≥ 100
3

.

Exercise 1.78. For 0 ≤ a, b, c ≤ 1, prove that

a

b + c + 1
+

b

c + a + 1
+

c

a + b + 1
+ (1− a)(1− b)(1 − c) ≤ 1.
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Exercise 1.79. (Russia, 2000) For real numbers x, y such that 0 ≤ x, y ≤ 1, prove
that

1√
1 + x2

+
1√

1 + y2
≤ 2√

1 + xy
.

Exercise 1.80. Prove that the function f(x) = sin x is concave in the interval [0, π].
Use this to verify that the angles A, B, C of a triangle satisfy sinA+sinB+sinC ≤
3
2

√
3.

Exercise 1.81. If A, B, C, D are angles belonging to the interval [0, π], then

(i) sinA sin B ≤ sin2
(

A+B
2

)
and the equality holds if and only if A = B,

(ii) sinA sin B sin C sin D ≤ sin4
(

A+B+C+D
4

)
,

(iii) sinA sin B sin C ≤ sin3
(

A+B+C
3

)
,

Moreover, if A, B, C are the internal angles of a triangle, then

(iv) sinA sin B sin C ≤ 3
8

√
3,

(v) sin A
2 sin B

2 sin C
2 ≤ 1

8 ,

(vi) sin A + sin B + sin C = 4 cos A
2 cos B

2 cos C
2 .

Exercise 1.82. (Bernoulli’s inequality)

(i) For any real number x > −1 and for every positive integer n, we have (1 +
x)n ≥ 1 + nx.

(ii) Use this inequality to provide another proof of the AM-GM inequality.

Exercise 1.83. (Schür’s inequality) If x, y, z are positive real numbers and n is a
positive integer, we have

xn(x− y)(x − z) + yn(y − z)(y − x) + zn(z − x)(z − y) ≥ 0.

For the case n = 1, the inequality can take one of the following forms:

(a) x3 + y3 + z3 + 3xyz ≥ xy(x + y) + yz(y + z) + zx(z + x).

(b) xyz ≥ (x + y − z)(y + z − x)(z + x− y).

(c) If x + y + z = 1, 9xyz + 1 ≥ 4(xy + yz + zx).

Exercise 1.84. (Canada, 1992) For any three non-negative real numbers x, y and
z we have

x(x− z)2 + y(y − z)2 ≥ (x− z)(y − z)(x + y − z).

Exercise 1.85. If a, b, c are positive real numbers, prove that

a

(b + c)2
+

b

(c + a)2
+

c

(a + b)2
≥ 9

4(a + b + c)
.
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Exercise 1.86. Let a, b and c be positive real numbers, prove that

1 +
3

ab + bc + ca
≥ 6

a + b + c
.

Moreover, if abc = 1, prove that

1 +
3

a + b + c
≥ 6

ab + bc + ca
.

Exercise 1.87. (Power mean inequality) Let x1, x2, . . . , xn be positive real numbers
and let t1, t2, . . . , tn be positive real numbers adding up to 1. Let r and s be two
nonzero real numbers such that r > s. Prove that

(t1xr
1 + · · ·+ tnxr

n)
1
r ≥ (t1xs

1 + · · ·+ tnxs
n)

1
s

with equality if and only if x1 = x2 = · · · = xn.

Exercise 1.88. (Two extensions of Hölder’s inequality) Let x1, x2, . . . , xn, y1, y2,
. . . , yn, z1, z2, . . . , zn be positive real numbers.

(i) If a, b, c are positive real numbers such that 1
a + 1

b = 1
c , then{

n∑
i=1

(xiyi)c

} 1
c

≤
{

n∑
i=1

xi
a

} 1
a
{

n∑
i=1

yi
b

} 1
b

.

(ii) If a, b, c are positive real numbers such that 1
a + 1

b + 1
c = 1, then

n∑
i=1

xiyizi ≤
{

n∑
i=1

xi
a

} 1
a
{

n∑
i=1

yi
b

} 1
b
{

n∑
i=1

zi
c

} 1
c

.

Exercise 1.89. (Popoviciu’s inequality) If I is an interval and f : I → R is a convex
function, then for a, b, c ∈ I the following inequality holds:

2
3

[
f

(
a + b

2

)
+ f

(
b + c

2

)
+ f

(
c + a

2

)]

≤ f(a) + f(b) + f(c)
3

+ f

(
a + b + c

3

)
.

Exercise 1.90. Let a, b, c be non-negative real numbers. Prove that

(i) a2 + b2 + c2 + 3 3
√

a2b2c2 ≥ 2(ab + bc + ca),

(ii) a2 + b2 + c2 + 2abc + 1 ≥ 2(ab + bc + ca).

Exercise 1.91. Let a, b, c be positive real numbers. Prove that(
b + c

a
+

c + a

b
+

a + b

c

)
≥ 4

(
a

b + c
+

b

c + a
+

c

a + b

)
.
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1.6 A helpful inequality

First, let us study two very useful algebraic identities that are deduced by consid-
ering a special factor of a3 + b3 + c3 − 3abc.

Let P denote the cubic polynomial

P (x) = x3 − (a + b + c)x2 + (ab + bc + ca)x− abc,

which has a, b and c as its roots. By substituting a, b, c in the polynomial, we
obtain

a3 − (a + b + c)a2 + (ab + bc + ca)a− abc = 0,

b3 − (a + b + c)b2 + (ab + bc + ca)b− abc = 0,

c3 − (a + b + c)c2 + (ab + bc + ca)c− abc = 0.

Adding up these three equations yields

a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab− bc− ca). (1.7)

It immediately follows that if a + b + c = 0, then a3 + b3 + c3 = 3abc.
Note also that the expression

a2 + b2 + c2 − ab− bc− ca

can also be written as

a2 + b2 + c2 − ab− bc− ca =
1
2
[(a− b)2 + (b− c)2 + (c− a)2]. (1.8)

In this way, we obtain another version of identity (1.7),

a3 + b3 + c3 − 3abc =
1
2
(a + b + c)[(a− b)2 + (b− c)2 + (c− a)2]. (1.9)

This presentation of the identity leads to a short proof of the AM-GM inequality
for three variables. From (1.9) it is clear that if a, b, c are positive numbers, then
a3 + b3 + c3 ≥ 3abc. Now, if x, y, z are positive numbers, taking a = 3

√
x, b = 3

√
y

and c = 3
√

z will lead us to
x + y + z

3
≥ 3
√

xyz

with equality if and only if x = y = z.
Note that identity (1.8) provides another proof of Exercise 1.27.

Exercise 1.92. For real numbers x, y, z, prove that

x2 + y2 + z2 ≥ |xy + yz + zx|.
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Exercise 1.93. For positive real numbers a, b, c, prove that

a2 + b2 + c2

abc
≥ 1

a
+

1
b

+
1
c
.

Exercise 1.94. If x, y, z are real numbers such that x < y < z, prove that

(x− y)3 + (y − z)3 + (z − x)3 > 0.

Exercise 1.95. Let a, b, c be the side lengths of a triangle. Prove that

3

√
a3 + b3 + c3 + 3abc

2
≥ max{a, b, c}.

Exercise 1.96. (Romania, 2007) For non-negative real numbers x, y, z, prove that

x3 + y3 + z3

3
≥ xyz +

3
4
|(x− y)(y − z)(z − x)|.

Exercise 1.97. (UK, 2008) Find the minimum of x2 + y2 + z2, where x, y, z are
real numbers such that x3 + y3 + z3 − 3xyz = 1.

A very simple inequality which may be helpful for proving a large number of
algebraic inequalities is the following.

Theorem 1.6.1 (A helpful inequality). If a, b, x, y are real numbers and x, y > 0,
then the following inequality holds:

a2

x
+

b2

y
≥ (a + b)2

x + y
. (1.10)

Proof. The proof is quite simple. Clearing out denominators, we can express the
inequality as

a2y(x + y) + b2x(x + y) ≥ (a + b)2xy,

which simplifies to become the obvious (ay − bx)2 ≥ 0. We see that the equality
holds if and only if ay = bx, that is, if and only if a

x = b
y .

Another form to prove the inequality is using the Cauchy-Schwarz inequality
in the following way:

(a + b)2 =
(

a√
x

√
x +

b√
y

√
y

)2

≤
(

a2

x
+

b2

y

)
(x + y). �

Using the above theorem twice, we can extend the inequality to three pairs
of numbers

a2

x
+

b2

y
+

c2

z
≥ (a + b)2

x + y
+

c2

z
≥ (a + b + c)2

x + y + z
,
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and a simple inductive argument shows that

a2
1

x1
+

a2
2

x2
+ · · ·+ a2

n

xn
≥ (a1 + a2 + · · ·+ an)2

x1 + x2 + · · ·+ xn
(1.11)

for all real numbers a1, a2, . . . , an and x1, x2, . . . , xn > 0, with equality if and
only if

a1

x1
=

a2

x2
= · · · = an

xn
.

Inequality (1.11) is also called the Cauchy-Schwarz inequality in Engel form or
Arthur Engel’s Minima Principle.

As a first application of this inequality, we will present another proof of the
Cauchy-Schwarz inequality. Let us write

a2
1 + a2

2 + · · ·+ a2
n =

a2
1b

2
1

b2
1

+
a2
2b

2
2

b2
2

+ · · ·+ a2
nb2

n

b2
n

,

then
a2
1b

2
1

b2
1

+
a2
2b

2
2

b2
2

+ · · ·+ a2
nb2

n

b2
n

≥ (a1b1 + a2b2 + · · ·+ anbn)2

b2
1 + b2

2 + · · ·+ b2
n

.

Thus, we conclude that

(a2
1 + a2

2 + · · ·+ a2
n)(b2

1 + b2
2 + · · ·+ b2

n) ≥ (a1b1 + a2b2 + · · ·+ anbn)2

and the equality holds if and only if

a1

b1
=

a2

b2
= · · · = an

bn
.

It is worth to mention that there are other forms of the Cauchy-Schwarz
inequality in Engel form.

Example 1.6.2. Let a1, . . . , an, b1, . . . , bn be positive real numbers. Prove that

(i)
a1

b1
+ · · ·+ an

bn
≥ (a1 + · · ·+ an)2

a1b1 + · · ·+ anbn
,

(ii)
a1

b2
1

+ · · ·+ an

b2
n

≥ 1
a1 + · · ·+ an

(
a1

b1
+ · · ·+ an

bn

)2

.

Both inequalities are direct consequence of inequality (1.11), as we can see
as follows.

(i)
a1

b1
+ · · ·+ an

bn
=

a2
1

a1b1
+ · · ·+ a2

n

anbn
≥ (a1 + · · ·+ an)2

a1b1 + · · ·+ anbn
,

(ii)
a1

b2
1

+ · · ·+ an

b2
n

=
a2
1

b21

a1
+ · · ·+

a2
n

b2n

an
≥ 1

a1 + · · ·+ an

(
a1

b1
+ · · ·+ an

bn

)2

.
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Example 1.6.3. (APMO, 1991) Let a1, . . . , an, b1, . . . , bn be positive real numbers
such that a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn. Prove that

a2
1

a1 + b1
+ · · ·+ a2

n

an + bn
≥ 1

2
(a1 + · · ·+ an).

Observe that (1.11) implies that

a2
1

a1 + b1
+ · · ·+ a2

n

an + bn
≥ (a1 + a2 + · · ·+ an)2

a1 + a2 + · · ·+ an + b1 + b2 + · · ·+ bn

=
(a1 + a2 + · · ·+ an)2

2(a1 + a2 + · · ·+ an)

=
1
2
(a1 + a2 + · · ·+ an).

The following example consists of a proof of the quadratic mean-arithmetic
mean inequality.

Example 1.6.4 (Quadratic mean-arithmetic mean inequality). For positive real
numbers x1, . . . , xn, we have√

x2
1 + x2

2 + · · ·+ x2
n

n
≥ x1 + x2 + · · ·+ xn

n
.

Observe that using (1.11) leads us to

x2
1 + x2

2 + · · ·+ x2
n

n
≥ (x1 + x2 + · · ·+ xn)2

n2
,

which implies the above inequality.

In some cases the numerators are not squares, but a simple trick allows us
to write them as squares, so that we can use the inequality. Our next application
shows this trick and offers a shorter proof for Example 1.4.9.

Example 1.6.5. (IMO, 1995) Let a, b, c be positive real numbers such that abc = 1.
Prove that

1
a3(b + c)

+
1

b3(a + c)
+

1
c3(a + b)

≥ 3
2
.

Observe that

1
a3(b + c)

+
1

b3(c + a)
+

1
c3(a + b)

=
1
a2

a(b + c)
+

1
b2

b(c + a)
+

1
c2

c(a + b)

≥ ( 1
a + 1

b + 1
c )2

2(ab + bc + ca)
=

ab + bc + ca

2(abc)

≥ 3 3
√

(abc)2

2
=

3
2
,



1.6 A helpful inequality 37

where the first inequality follows from (1.11) and the second is a consequence of
the AM -GM inequality.

As a further example of the use of inequality (1.11), we provide a simple
proof of Nesbitt’s inequality.

Example 1.6.6 (Nesbitt’s inequality). For a, b, c ∈ R+, we have

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

We multiply the three terms on the left-hand side of the inequality by a
a , b

b ,
c
c , respectively, and then we use inequality (1.11) to produce

a2

a(b + c)
+

b2

b(c + a)
+

c2

c(a + b)
≥ (a + b + c)2

2(ab + bc + ca)
.

From Equation (1.8) we know that a2 + b2 + c2 − ab − bc − ca ≥ 0, that is,
(a + b + c)2 ≥ 3(ab + bc + ca). Therefore

a

b + c
+

b

c + a
+

c

a + b
≥ (a + b + c)2

2(ab + bc + ca)
≥ 3

2
.

Example 1.6.7. (Czech and Slovak Republics, 1999) For a, b and c positive real
numbers, prove the inequality

a

b + 2c
+

b

c + 2a
+

c

a + 2b
≥ 1.

Observe that

a

b + 2c
+

b

c + 2a
+

c

a + 2b
=

a2

ab + 2ca
+

b2

bc + 2ab
+

c2

ca + 2bc
.

Then using (1.11) yields

a2

ab + 2ca
+

b2

bc + 2ab
+

c2

ca + 2bc
≥ (a + b + c)2

3(ab + bc + ca)
≥ 1,

where the last inequality follows in the same way as in the previous example.

Exercise 1.98. (South Africa, 1995) For a, b, c, d positive real numbers, prove that

1
a

+
1
b

+
4
c

+
16
d
≥ 64

a + b + c + d
.

Exercise 1.99. Let a and b be positive real numbers. Prove that

8(a4 + b4) ≥ (a + b)4.
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Exercise 1.100. Let x, y, z be positive real numbers. Prove that

2
x + y

+
2

y + z
+

2
z + x

≥ 9
x + y + z

.

Exercise 1.101. Let a, b, x, y, z be positive real numbers. Prove that

x

ay + bz
+

y

az + bx
+

z

ax + by
≥ 3

a + b
.

Exercise 1.102. Let a, b, c be positive real numbers. Prove that

a2 + b2

a + b
+

b2 + c2

b + c
+

c2 + a2

c + a
≥ a + b + c.

Exercise 1.103. (i) Let x, y, z be positive real numbers. Prove that

x

x + 2y + 3z
+

y

y + 2z + 3x
+

z

z + 2x + 3y
≥ 1

2
.

(ii) (Moldova, 2007) Let w, x, y, z be positive real numbers. Prove that

w

x + 2y + 3z
+

x

y + 2z + 3w
+

y

z + 2w + 3x
+

z

w + 2x + 3y
≥ 2

3
.

Exercise 1.104. (Croatia, 2004) Let x, y, z be positive real numbers. Prove that

x2

(x + y)(x + z)
+

y2

(y + z)(y + x)
+

z2

(z + x)(z + y)
≥ 3

4
.

Exercise 1.105. For a, b, c, d positive real numbers, prove that

a

b + c
+

b

c + d
+

c

d + a
+

d

a + b
≥ 2.

Exercise 1.106. Let a, b, c, d, e be positive real numbers. Prove that

a

b + c
+

b

c + d
+

c

d + e
+

d

e + a
+

e

a + b
≥ 5

2
.

Exercise 1.107. (i) Prove that, for all positive real numbers a, b, c, x, y, z with
a ≥ b ≥ c and z ≥ y ≥ x, the following inequality holds:

a3

x
+

b3

y
+

c3

z
≥ (a + b + c)3

3(x + y + z)
.

(ii) (Belarus, 2000) Prove that, for all positive real numbers a, b, c, x, y, z, the
following inequality holds:

a3

x
+

b3

y
+

c3

z
≥ (a + b + c)3

3(x + y + z)
.
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Exercise 1.108. (Greece, 2008) For x1, x2, . . . , xn positive integers, prove that

(
x2

1 + x2
2 + · · ·+ x2

n

x1 + x2 + · · ·+ xn

) kn
t

≥ x1 · x2 · · · · · xn,

where k = max {x1, x2, . . . , xn} and t = min {x1, x2, . . . , xn}. Under which con-
dition the equality holds?

1.7 The substitution strategy

Substitution is a useful strategy to solve inequality problems. Making an adequate
substitution we can, for instance, change the difficult terms of the inequality a
little, we can simplify expressions or we can reduce terms. In this section we give
some ideas of what can be done with this strategy. As always, the best way to do
that is through some examples.

One useful suggestion for problems that contain in the hypothesis an extra
condition, is to use that condition to simplify the problem. In the next example we
apply this technique to eliminate the denominators in order to make the problem
easier to solve.

Example 1.7.1. If a, b, c are positive real numbers less than 1, with a + b + c = 2,
then (

a

1− a

)(
b

1− b

)(
c

1− c

)
≥ 8.

After performing the substitution x = 1− a, y = 1− b, z = 1− c, we obtain
that x+ y + z = 3− (a + b + c) = 1, a = 1− x = y + z, b = z + x, c = x+ y. Hence
the inequality is equivalent to(

y + z

x

)(
z + x

y

)(
x + y

z

)
≥ 8,

and in turn, this is equivalent to

(x + y)(y + z)(z + x) ≥ 8xyz.

This last inequality is quite easy to prove. It is enough to apply three times the
AM-GM inequality under the form (x + y) ≥ 2

√
xy (see Exercise 1.26).

It may be possible that the extra condition is used only as part of the solution,
as in the following two examples.

Example 1.7.2. (Mexico, 2007) If a, b, c are positive real numbers that satisfy
a + b + c = 1, prove that

√
a + bc +

√
b + ca +

√
c + ab ≤ 2.
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Using the condition a + b + c = 1, we have that

a + bc = a(a + b + c) + bc = (a + b)(a + c),

then, by the AM-GM inequality it follows that

√
a + bc =

√
(a + b)(a + c) ≤ 2a + b + c

2
.

Similarly,

√
b + ca ≤ 2b + c + a

2
and

√
c + ab ≤ 2c + a + b

2
.

Thus, after adding the three inequalities we obtain
√

a + bc +
√

b + ca +
√

c + ab

≤ 2a + b + c

2
+

2b + c + a

2
+

2c + a + b

2
=

4a + 4b + 4c

2
= 2.

The equality holds when a + b = a + c, b + c = b + a and c + a = c + b, that is,
when a = b = c = 1

3 .

Example 1.7.3. If a, b, c are positive real numbers with ab + bc + ca = 1, prove
that

a√
a2 + 1

+
b√

b2 + 1
+

c√
c2 + 1

≤ 3
2
.

Note that (a2 + 1) = a2 + ab + bc + ca = (a + b)(a + c). Similarly, b2 + 1 =
(b + c)(b + a) and c2 + 1 = (c + a)(c + b). Now, the inequality under consideration
is equivalent to

a√
(a + b)(a + c)

+
b√

(b + c)(b + a)
+

c√
(c + a)(c + b)

≤ 3
2
.

Using the AM-GM inequality, applied to every element of the sum on the left-hand
side, we obtain

a√
(a + b)(a + c)

+
b√

(b + c)(b + a)
+

c√
(c + a)(c + b)

≤ 1
2

(
a

a + b
+

a

a + c

)
+

1
2

(
b

b + c
+

b

b + a

)
+

1
2

(
c

c + a
+

c

c + b

)
=

3
2
.

Many inequality problems suggest which substitution should be made. In the
following example the substitution allows us to make at least one of the terms in
the inequality look simpler.

Example 1.7.4. (India, 2002) If a, b, c are positive real numbers, prove that

a

b
+

b

c
+

c

a
≥ c + a

c + b
+

a + b

a + c
+

b + c

b + a
.
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Making the substitution x = a
b , y = b

c , z = c
a the left-hand side of the

inequality is now more simple, x + y + z. Let us see how the right-hand side
changes. The first element of the sum is modified as follows:

c + a

c + b
=

1 + a
c

1 + b
c

=
1 + a

b
b
c

1 + b
c

=
1 + xy

1 + y
= x +

1− x

1 + y
.

Similarly,
a + b

a + c
= y +

1− y

1 + z
and

b + c

b + a
= z +

1− z

1 + x
.

Now, the inequality is equivalent to

x− 1
1 + y

+
y − 1
1 + z

+
z − 1
1 + x

≥ 0

with the extra condition xyz = 1.
The last inequality can be rewritten as

(x2 − 1)(z + 1) + (y2 − 1)(x + 1) + (z2 − 1)(y + 1) ≥ 0,

which in turn is equivalent to

x2z + y2x + z2y + x2 + y2 + z2 ≥ x + y + z + 3.

But, from the AM-GM inequality, we have x2z+y2x+z2y ≥ 3 3
√

x3y3z3 = 3. Also,
x2 + y2 + z2 ≥ 1

3 (x + y + z)2 = x+y+z
3 (x + y + z) ≥ 3

√
xyz(x + y + z) = x + y + z,

where the first inequality follows from inequality (1.11).
In order to make a substitution, sometimes it is necessary to work a little bit

beforehand, as we can see in the following example. This example also helps us
to point out that we may need to make more than one substitution in the same
problem.

Example 1.7.5. Let a, b, c be positive real numbers, prove that

(a + b)(a + c) ≥ 2
√

abc(a + b + c).

Dividing both sides of the given inequality by a2 and setting x = b
a , y = c

a ,
the inequality becomes

(1 + x)(1 + y) ≥ 2
√

xy(1 + x + y).

Now, dividing both sides by xy and making the substitution r = 1+ 1
x , s = 1+ 1

y ,
the inequality we need to prove becomes

rs ≥ 2
√

rs− 1.

This last inequality is equivalent to (rs − 2)2 ≥ 0, which become evident after
squaring both sides and doing some algebra.

It is a common situation for inequality problems to have several solutions
and also to accept several substitutions that help to solve the problem. We will
see an instance of this in the next example.
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Example 1.7.6. (Korea, 1998) If a, b, c are positive real numbers such that a+ b+
c = abc, prove that

1√
1 + a2

+
1√

1 + b2
+

1√
1 + c2

≤ 3
2
.

Under the substitution x = 1
a , y = 1

b , z = 1
c , condition a + b + c = abc

becomes xy + yz + zx = 1 and the inequality becomes equivalent to

x√
x2 + 1

+
y√

y2 + 1
+

z√
z2 + 1

≤ 3
2
.

This is the third example in this section.
Another solution is to make the substitution a = tanA, b = tanB, c = tanC.

Since tan A + tanB + tanC = tanA tan B tan C, then A + B + C = π (or a
multiple of π). Now, since 1 + tan2 A = (cos A)−2, the inequality is equivalent to
cosA + cosB + cosC ≤ 3

2 , which is a valid result as will be shown in Example
2.5.2. Note that the Jensen inequality cannot be applied in this case because the
function f(x) = 1√

1+x2 is not concave in R+.

We note that not all substitutions are algebraic, since there are trigonometric
substitutions that can be useful, as is shown in the last example and as we will
see next. Also, as will be shown in Sections 2.2 and 2.5 of the next chapter, there
are some geometric substitutions that can be used for the same purposes.

Example 1.7.7. (Romania, 2002) If a, b, c are real numbers in the interval (0, 1),
prove that √

abc +
√

(1− a)(1 − b)(1− c) < 1.

Making the substitution a = cos2 A, b = cos2 B, c = cos2 C, with A, B, C in
the interval (0, π

2 ), we obtain that
√

1− a =
√

1− cos2 A = sin A,
√

1− b = sin B

and
√

1− c = sinC. Therefore the inequality is equivalent to

cosA cosB cosC + sin A sin B sinC < 1.

But observe that

cosA cosB cosC + sinA sin B sin C < cosA cosB + sinA sin B

= cos(A−B) ≤ 1.

Exercise 1.109. Let x, y, z be positive real numbers. Prove that

x3

x3 + 2y3
+

y3

y3 + 2z3
+

z3

z3 + 2x3
≥ 1.

Exercise 1.110. (Kazakhstan, 2008) Let x, y, z be positive real numbers such that
xyz = 1. Prove that

1
yz + z

+
1

zx + x
+

1
xy + y

≥ 3
2
.
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Exercise 1.111. (Russia, 2004) If n > 3 and x1, x2, . . . , xn are positive real numbers
with x1x2 · · ·xn = 1, prove that

1
1 + x1 + x1x2

+
1

1 + x2 + x2x3
+ · · ·+ 1

1 + xn + xnx1
> 1.

Exercise 1.112. (Poland, 2006) Let a, b, c be positive real numbers such that
ab + bc + ca = abc. Prove that

a4 + b4

ab(a3 + b3)
+

b4 + c4

bc(b3 + c3)
+

c4 + a4

ca(c3 + a3)
≥ 1.

Exercise 1.113. (Ireland, 2007) Let a, b, c be positive real numbers, prove that

1
3

(
bc

a
+

ca

b
+

ca

b

)
≥

√
a2 + b2 + c2

3
≥ a + b + c

3
.

Exercise 1.114. (Romania, 2008) Let a, b, c be positive real numbers with abc = 8.
Prove that

a− 2
a + 1

+
b− 2
b + 1

+
c− 2
c + 1

≤ 0.

1.8 Muirhead’s theorem

In 1903, R.F. Muirhead published a paper containing the study of some algebraic
methods applicable to identities and inequalities of symmetric algebraic functions
of n variables.

While considering algebraic expressions of the form xa1
1 xa2

2 · · ·xan
n , he an-

alyzed symmetric polynomials containing these expressions in order to create a
“certain order” in the space of n-tuples (a1, a2, . . . , an) satisfying the condition
a1 ≥ a2 ≥ · · · ≥ an.

We will assume that xi > 0 for all 1 ≤ i ≤ n. We will denote by∑
!
F (x1, . . . , xn)

the sum of the n! terms obtained from evaluating F in all possible permutations
of (x1, . . . , xn). We will consider only the particular case

F (x1, . . . , xn) = xa1
1 xa2

2 · · ·xan
n with xi > 0, ai ≥ 0.

We write [a] = [a1, a2, . . . , an] = 1
n!

∑
!
xa1

1 xa2
2 · · ·xan

n . For instance, for the vari-
ables x, y, z > 0 we have that

[1, 1] = xy, [1, 1, 1] = xyz, [2, 1, 0] =
1
3!

[x2(y + z) + y2(x + z) + z2(x + y)].
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It is clear that [a] is invariant under any permutation of the (a1, a2, . . . , an) and
therefore two sets of a are the same if they only differ in arrangement. We will
say that a mean value of the type [a] is a symmetrical mean. In particular,
[1, 0, . . . , 0] = (n−1)!

n! (x1 + x2 + · · · + xn) = 1
n

∑n
i=1 xi is the arithmetic mean

and [ 1
n , 1

n , . . . , 1
n ] = n!

n! (x
1
n
1 · x 1

n
2 · · ·x

1
n
n ) = n

√
x1x2 · · ·xn is the geometric mean.

When a1 +a2 + · · ·+an = 1, [a] is a common generalization of both the arithmetic
mean and the geometric mean.

If a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn, usually [b] is not comparable
to [a], in the sense that there is an inequality between their associated expressions
valid for all n-tuples of non-negative real numbers x1, x2, . . . , xn.

Muirhead wanted to compare the values of the symmetric polynomials [a] and
[b] for any set of non-negative values of the variables occurring in both polynomials.

From now on we denote (a) = (a1, a2, . . . , an).

Definition 1.8.1. We will say that (b) ≺ (a) ((b) is majorized by (a)) when (a) and
(b) can be rearranged to satisfy the following two conditions:

(1)
n∑

i=1

bi =
n∑

i=1

ai ;

(2)
ν∑

i=1

bi ≤
ν∑

i=1

ai for all 1 ≤ ν < n.

It is clear that (a) ≺ (a) and that (b) ≺ (a) and (c) ≺ (b) implies (c) ≺ (a).

Theorem 1.8.2 (Muirhead’s theorem). [b] ≤ [a] for any n-tuple of non-negative
numbers (x1, x2, . . . , xn) if and only if (b) ≺ (a). Equality takes place only when
(b) and (a) are identical or when all the xis are equal.

Before going through the proof, which is quite difficult, let us look at some
examples. First, it is clear that [2, 0, 0] cannot be compared with [1, 1, 1] because
the first condition in Definition 1.8.1 is not satisfied, but we can see that [2, 0, 0] ≥
[1, 1, 0], which is equivalent to

x2 + y2 + z2 ≥ xy + yz + zx.

In the same way, we can see that

1. x2 + y2 ≥ 2xy ⇔ [2, 0] ≥ [1, 1],

2. x3 + y3 + z3 ≥ 3xyz ⇔ [3, 0, 0] ≥ [1, 1, 1],

3. x5 + y5 ≥ x3y2 + x2y3 ⇔ [5, 0] ≥ [3, 2],

4. x2y2 + y2z2 + z2x2 ≥ x2yz + y2xz + z2xy ⇔ [2, 2, 0] ≥ [2, 1, 1],
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and all these inequalities are satisfied if we take for granted Muirhead’s theorem.

Proof of Muirhead’s theorem. Suppose that [b] ≤ [a] for any n positive numbers
x1, x2, . . . , xn. Taking xi = x, for all i, we obtain

x
∑

bi = [b] ≤ [a] = x
∑

ai .

This can only be true for all x if
∑

bi =
∑

ai.
Next, take x1 = x2 = · · · = xν = x, xν+1 = · · · = xn = 1 and x very large. Since
(b) and (a) are in decreasing order, the index of the highest powers of x in [b] and
[a] are

b1 + b2 + · · ·+ bν , a1 + a2 + · · ·+ aν ,

respectively. Thus, it is clear that the first sum can not be greater than the second
and this proves (2) in Definition 1.8.1.

The proof in the other direction is more difficult to establish, and we will
need a new definition and two more lemmas.

We define a special type of linear transformation T of the a’s, as follows.
Suppose that ak > al, then let us write

ak = ρ + τ , al = ρ− τ (0 < τ ≤ ρ).

If now 0 ≤ σ < τ ≤ ρ, then a T -transformation is defined by

T (ak) = bk = ρ + σ =
τ + σ

2τ
ak +

τ − σ

2τ
al,

T (al) = bl = ρ− σ =
τ − σ

2τ
ak +

τ + σ

2τ
al,

T (aν) = aν (ν �= k, ν �= l).

If (b) arises from (a) by a T -transformation, we write b = Ta. The definition does
not necessarily imply that either the (a) or the (b) are in decreasing order.
The sufficiency of our comparability condition will be established if we can prove
the following two lemmas.

Lemma 1.8.3. If b = Ta, then [b] ≤ [a] with equality taking place only when all the
xi’s are equal.

Proof. We may rearrange (a) and (b) so that k = 1, l = 2. Thus

[a]− [b] = [ρ + τ, ρ− τ, a3, . . .]− [ρ + σ, ρ− σ, a3, . . .]

=
1

2n!

∑
!
xa3

3 · · ·xan
n (xρ+τ

1 xρ−τ
2 + xρ−τ

1 xρ+τ
2 )

− 1
2n!

∑
!
xa3

3 · · ·xan
n (xρ+σ

1 xρ−σ
2 + xρ−σ

1 xρ+σ
2 )

=
1

2n!

∑
!
(x1x2)ρ−τxa3

3 · · ·xan
n (xτ+σ

1 − xτ+σ
2 )(xτ−σ

1 − xτ−σ
2 ) ≥ 0

with equality being the case only when all the xi’s are equal. �
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Lemma 1.8.4. If (b) ≺ (a), but (b) is not identical to (a), then (b) can be derived
from (a) using the successive application of a finite number of T -transformations.

Proof. We call the number of differences aν−bν which are not zero, the discrepancy
between (a) and (b). If the discrepancy is zero, the sets are identical. We will prove
the lemma by induction, assuming it to be true when the discrepancy is less than
r and proving that it is also true when the discrepancy is r.

Suppose then that (b) ≺ (a) and that the discrepancy is r > 0. Since∑n
i=1 ai =

∑n
i=1 bi, and

∑
(aν − bν) = 0, and not all of these differences are zero,

there must be positive and negative differences, and the first which is not zero
must be positive because of the second condition of (b) ≺ (a). We can therefore
find k and l such that

bk < ak, bk+1 = ak+1, . . . , bl−1 = al−1, bl > al; (1.12)

that is, al − bl is the first negative difference and ak − bk is the last positive
difference which precedes it.

We take ak = ρ + τ , al = ρ− τ , and define σ by

σ = max(|bk − ρ| , |bl − ρ|).
Then 0 < τ ≤ ρ, since ak > al. Also, one (possible both) of bl − ρ = −σ or
bk − ρ = σ is true, since bk ≥ bl, and σ < τ , since bk < ak and bl > al. Hence
0 ≤ σ < τ ≤ ρ.

We now write a′k = ρ + σ, a′l = ρ− σ, a′ν = aν (ν �= k, ν �= l). If bk − ρ = σ,
a′k = bk, and if bl − ρ = −σ, then a′l = bl. Since the pairs ak, bk and al, bl each
contributes one unit to the discrepancy r between (b) and (a), the discrepancy
between (b) and (a′) is smaller, being equal to r − 1 or r − 2.

Next, comparing the definition of (a′) with the definition of the T -transfor-
mation, and observing that 0 ≤ σ < τ ≤ ρ, we can infer that (a′) arises from (a)
by a T -transformation.

Finally, let us prove that (b) ≺ (a′). In order to do that, we must verify that
the two conditions of ≺ are satisfied and that the order of (a′) is non-increasing.
For the first one, we have

a′k + a′l = 2ρ = ak + al,
n∑

i=1

bi =
n∑

i=1

ai =
n∑

i=1

a′i.

For the second one, we must prove that

b1 + b2 + · · ·+ bν ≤ α′1 + α′2 + · · ·+ α′ν .

Now, this is true if ν < k or ν ≥ l, as can be established by using the definition of
(a′) and also the second condition of (b) ≺ (a). It is true for ν = k, because it is
true for ν = k − 1 and bk ≤ a′k, and it is true for k < ν < l because it is valid for
ν = k and the intervening b and a′ are identical.
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Finally, we observe that

bk ≤ ρ + |bk − ρ| ≤ ρ + σ = a′k,

bl ≥ ρ− |bl − ρ| ≥ ρ− σ = a′l,

and then, using (1.12),

a′k−1 = ak−1 ≥ ak = ρ + τ > ρ + σ = a′k ≥ bk ≥ bk+1 = ak+1 = a′k+1,

a′l−1 = al−1 = bl−1 ≥ bl ≥ a′l = ρ− σ > ρ− τ = al ≥ al+1 = a′l+1.

The inequalities involving a′ are as required.
We have thus proved that (b) ≺ (a′), a set arising from (a) using a transfor-

mation T and having a discrepancy from (b) of less than r. This proves the lemma
and completes the proof of Muirhead’s theorem. �

The proof of Muirhead’s theorem demonstrates to us how the difference be-
tween two comparable means can be decomposed as a sum of obviously positive
terms by repeated application of the T -transformation. We can produce from this
result a new proof for the AM-GM inequality.

Example 1.8.5 (The AM-GM inequality). For real positive numbers y1, y2, . . . ,
yn,

y1 + y2 + · · ·+ yn

n
≥ n
√

y1y2 · · · yn.

Note that the AM-GM inequality is equivalent to

1
n

n∑
i=1

xn
i ≥ x1x2 · · ·xn,

where xi = n
√

yi.
Now, we observe that

1
n

n∑
i=1

xn
i = [n, 0, 0, . . . , 0] and x1x2 · · ·xn = [1, 1, . . . , 1].

By Muirhead’s theorem we can show that

[n, 0, 0, . . . , 0] ≥ [1, 1, . . . , 1].

Next, we provide another proof for the AM-GM inequality, something we
shall do by following the ideas inherent in the proof of Muirhead’s theorem in
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order to illustrate how it works.

1
n

n∑
i=1

xn
i − (x1x2 · · ·xn) = [n, 0, 0, . . . , 0]− [1, 1, . . . , 1]

= ([n, 0, 0, . . . , 0]− [n− 1, 1, 0, . . . , 0])
+ ([n− 1, 1, 0, . . . , 0]− [n− 2, 1, 1, 0, . . . , 0])
+ ([n− 2, 1, 1, 0, . . . , 0]− [n− 3, 1, 1, 1, 0, . . . , 0])
+ · · ·+ ([2, 1, 1, . . . , 1]− [1, 1, . . .1])

=
1

2n!

(∑
!
(xn−1

1 − xn−1
2 )(x1 − x2)

+
∑

!
(xn−2

1 − xn−2
2 )(x1 − x2)x3

+
∑

!
(xn−3

1 − xn−3
2 )(x1 − x2)x3x4 + · · ·

)
.

Since (xν
r − xν

s )(xr − xs) > 0, unless xr = xs, the inequality follows.

Example 1.8.6. If a, b are positive real numbers, then√
a2

b
+

√
b2

a
≥ √a +

√
b.

Setting x =
√

a, y =
√

b and simplifying, we have to prove

x3 + y3 ≥ xy(x + y).

Using Muirhead’s theorem, we get

[3, 0] =
1
2
(x3 + y3) ≥ 1

2
xy(x + y) = [2, 1],

and thus the result follows.

Example 1.8.7. If a, b, c are non-negative real numbers, prove that

a3 + b3 + c3 + abc ≥ 1
7
(a + b + c)3.

It is not difficult to see that

(a + b + c)3 = 3[3, 0, 0] + 18[2, 1, 0] + 36[1, 1, 1].

Then we need to prove that

3[3, 0, 0] + 6[1, 1, 1] ≥ 1
7
(3[3, 0, 0] + 18[2, 1, 0] + 36[1, 1, 1]),

that is,
18
7

[3, 0, 0] +
(

6− 36
7

)
[1, 1, 1] ≥ 18

7
[2, 1, 0]
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or
18
7

([3, 0, 0]− [2, 1, 0]) +
(

6− 36
7

)
[1, 1, 1] ≥ 0.

This follows using the inequalities [3, 0, 0] ≥ [2, 1, 0] and [1, 1, 1] ≥ 0.

Example 1.8.8. If a, b, c are non-negative real numbers, prove that

a + b + c ≤ a2 + b2

2c
+

b2 + c2

2a
+

c2 + a2

2b
≤ a3

bc
+

b3

ca
+

c3

ab
.

The inequalities are equivalent to the following:

2(a2bc + ab2c + abc2) ≤ ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2) ≤ 2(a4 + b4 + c4),

which is in turn equivalent to [2, 1, 1] ≤ [3, 1, 0] ≤ [4, 0, 0]. Using Muirhead’s theo-
rem we arrive at the result.

Exercise 1.115. Prove that any three positive real numbers a, b and c satisfy

a5 + b5 + c5 ≥ a3bc + b3ca + c3ab.

Exercise 1.116. (IMO, 1961) Let a, b, c be the lengths of the sides of a triangle,
and let (ABC) denote its area. Prove that

4
√

3(ABC) ≤ a2 + b2 + c2.

Exercise 1.117. Let a, b, c be positive real numbers. Prove that

a

(a + b)(a + c)
+

b

(b + c)(b + a)
+

c

(c + a)(c + b)
≤ 9

4(a + b + c)
.

Exercise 1.118. (IMO, 1964) Let a, b, c be positive real numbers. Prove that

a3 + b3 + c3 + 3abc ≥ ab(a + b) + bc(b + c) + ca(c + a).

Exercise 1.119. (Short list Iberoamerican, 2003) Let a, b, c be positive real num-
bers. Prove that

a3

b2 − bc + c2
+

b3

c2 − ca + a2
+

c3

a2 − ab + b2
≥ a + b + c.

Exercise 1.120. (Short list IMO, 1998) Let a, b, c be positive real numbers such
that abc = 1. Prove that

a3

(1 + b)(1 + c)
+

b3

(1 + c)(1 + a)
+

c3

(1 + a)(1 + b)
≥ 3

4
.



Chapter 2

Geometric Inequalities

2.1 Two basic inequalities

The two basic geometric inequalities we will be refering to in this section involve
triangles. One of them is the triangle inequality and we will refer to it as D1; the
second one is not really an inequality, but it represents an important observation
concerning the geometry of triangles which points out that if we know the greatest
angle of a triangle, then we know which is the longest side of the triangle; this
observation will be denoted as D2.

D1. If A, B and C are points on the plane, then

AB + BC ≥ AC.

Moreover, the equality holds if and only if B lies on the line segment AC.

D2. In a triangle, the longest side is opposite to the greatest angle and vice versa.

Hence, if in the triangle ABC we have ∠A > ∠B, then BC > CA.

Exercise 2.1. (i) If a, b, c are positive numbers with a < b + c, b < c + a and
c < a + b, then a triangle exists with side lengths a, b and c.

(ii) To be able to construct a triangle with side lengths a ≤ b ≤ c, it is sufficient
that c < a + b.

(iii) It is possible to construct a triangle with sides of length a, b and c if and
only if there are positive numbers x, y, z such that a = x + y, b = y + z and
c = z + x.

Exercise 2.2. (i) If it is possible to construct a triangle with side-lengths a < b <
c, then it is possible to construct a triangle with side-lengths

√
a <

√
b <

√
c.

(ii) The converse of (i) is false.
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(iii) If it is possible to construct a triangle with side-lengths a < b < c, then it is
possible to construct a triangle with side-lengths 1

a+b ,
1

b+c and 1
c+a .

Exercise 2.3. Let a, b, c, d and e be the lengths of five segments such that it is
possible to construct a triangle using any three of them. Prove that there are three
of them that form an acute triangle.

Sometimes the key to solve a problem lies in the ability to identify certain
quantities that can be related to geometric measurements, as in the following
example.

Example 2.1.1. If a, b, c are positive numbers with a2 + b2 − ab = c2, prove that
(a− b)(b− c) ≤ 0.

Since c2 = a2 + b2 − ab = a2 + b2 − 2ab cos 60◦, we can think that a, b, c are
the lengths of the sides of a triangle such that the measure of the angle opposed
to the side of length c is 60◦. The angles of the triangle ABC satisfy ∠A ≤ 60◦

and ∠B ≥ 60◦, or ∠A ≥ 60◦ and ∠B ≤ 60◦; hence, using property D2 we can
deduce that a ≤ c ≤ b or a ≥ c ≥ b. In any case it follows that (a− b)(b− c) ≤ 0.

Observation 2.1.2. We can also solve the example above without the identification
of a, b and c with the lengths of the sides of a triangle.

First suppose that a ≤ b, then the fact that a2 + b2 − ab = c2 implies that
a(a− b) = c2− b2 = (c− b)(c+ b), hence c− b ≤ 0 and therefore (a− b)(b− c) ≤ 0.

Similarly, a ≥ b implies c− b ≥ 0, and hence

(a− b)(b− c) ≤ 0.

Another situation where it is not obvious that we can identify the elements
with a geometric inequality, or that the use of geometry may be helpful, is shown
in the following example.

Example 2.1.3. If a, b, c are positive numbers, then√
a2 + ac + c2 ≤

√
a2 − ab + b2 +

√
b2 − bc + c2.

The radicals suggest using the cosine law with angles of 120◦ and of 60◦ as
follows: a2 + ac + c2 = a2 + c2 − 2ac cos 120◦, a2 − ab + b2 = a2 + b2 − 2ab cos 60◦

and b2 − bc + c2 = b2 + c2 − 2bc cos 60◦.

A

B C

D

b

a

c
60◦

60◦
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Then, if we consider a quadrilateral ABCD, with ∠ADB = ∠BDC = 60◦ and
∠ADC = 120◦, such that AD = a, BD = b and CD = c, we can deduce that AB =√

a2 − ab + b2, BC =
√

b2 − bc + c2 and CA =
√

a2 + ac + c2. The inequality we
have to prove becomes the triangle inequality for the triangle ABC.

Exercise 2.4. Let ABC be a triangle with ∠A > ∠B, prove that BC > 1
2AB.

Exercise 2.5. Let ABCD be a convex quadrilateral, prove that

(i) if AB + BD < AC + CD, then AB < AC,

(ii) if ∠A > ∠C and ∠D > ∠B, then BC > 1
2AD.

Exercise 2.6. If a1, a2, a3, a4 and a5 are the lengths of the sides of a convex
pentagon and if d1, d2, d3, d4 and d5 are the lengths of its diagonals, prove that

1
2

<
a1 + a2 + a3 + a4 + a5

d1 + d2 + d3 + d4 + d5
< 1.

Exercise 2.7. The length ma of the median AA′ of a triangle ABC satisfies ma >
b+c−a

2 .

Exercise 2.8. If the length ma of the median AA′ of a triangle ABC satisfies
ma > 1

2a, prove that ∠BAC < 90◦.

Exercise 2.9. If AA′ is the median of the triangle ABC and if AB < AC, then
∠BAA′ > ∠A′AC.

Exercise 2.10. If ma, mb and mc are the lengths of the medians of a triangle with
side-lengths a, b and c, respectively, prove that it is possible to construct a triangle
with side-lengths ma, mb and mc, and that

3
4

(a + b + c) < ma + mb + mc < a + b + c.

Exercise 2.11. (Ptolemy’s inequality) If ABCD is a convex quadrilateral, then
AC · BD ≤ AB · CD + BC · DA. The equality holds if and only if ABCD is a
cyclic quadrilateral.

Exercise 2.12. Let ABCD be a cyclic quadrilateral. Prove that AC > BD if and
only if (AD −BC)(AB −DC) > 0.

Exercise 2.13. (Pompeiu’s problem) Let ABC be an equilateral triangle and let
P be a point that does not belong to the circumcircle of ABC. Prove that PA,
PB and PC are the lengths of the sides of a triangle.

Exercise 2.14. If ABCD is a paralelogram, prove that

|AB2 −BC2| < AC · BD.
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Exercise 2.15. If a, b and c are the lengths of the sides of a triangle, ma, mb and
mc represent the lengths of the medians and R is the circumradius, prove that

(i)
a2 + b2

mc
+

b2 + c2

ma
+

c2 + a2

mb
≤ 12R,

(ii) ma(bc− a2) + mb(ca− b2) + mc(ab− c2) ≥ 0.

Exercise 2.16. Let ABC be a triangle whose sides have lengths a, b and c. Suppose
that c > b, prove that

1
2
(c− b) < mb −mc <

3
2
(c− b),

where mb and mc are the lengths of the medians.

Exercise 2.17. (Iran, 2005) Let ABC be a triangle with ∠A = 90◦. Let D be the
intersection of the internal angle bisector of ∠A with the side BC and let Ia be
the center of the excircle of the triangle ABC opposite to the vertex A. Prove that

AD

DIa
≤
√

2− 1.

2.2 Inequalities between the sides of a triangle

Inequalities involving the lengths of the sides of a triangle appear frequently in
mathematical competitions. One sort of problems consists of those where you are
asked to prove some inequality that is satisfied by the lengths of the sides of a
triangle without any other geometric elements being involved, as in the following
example.

Example 2.2.1. The lengths a, b and c of the sides of a triangle satisfy

a (b + c− a) < 2bc.

Since the inequality is symmetric in b and c, we can assume, without loss of
generality, that c ≤ b. We will prove the inequality in the following cases.
Case 1. a ≤ b.
Since they are the lengths of the sides of a triangle, we have that b < a + c; then

b + c− a = b− a + c < c + c = 2c ≤ 2bc

a
.

Case 2. a ≥ b.
In this case b− a ≤ 0, and since a < b + c ≤ 2b, we can deduce that

b + c− a = c + b− a ≤ c <
2bc

a
.

Another type of problem involving the lengths of the sides of a triangle is
when we are asked to prove that a certain relationship between the numbers a, b
and c is sufficient to construct a triangle with sides of the same length.
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Example 2.2.2. (i) If a, b, c are positive numbers and satisfy,
(
a2 + b2 + c2

)2
>

2
(
a4 + b4 + c4

)
, then a, b and c are the lengths of the sides of a triangle.

(ii) If a, b, c, d are positive numbers and satisfy(
a2 + b2 + c2 + d2

)2
> 3

(
a4 + b4 + c4 + d4

)
,

then,using any three of them we can construct a triangle.

For part (i), it is sufficient to observe that(
a2 + b2 + c2

)2−2
(
a4 + b4 + c4

)
= (a+ b+ c)(a+ b− c)(a− b+c)(−a+b+c) > 0,

and then note that none of these factors is negative. Compare this with Example
1.2.5.

For part (ii), we can deduce that

3
(
a4 + b4 + c4 + d4

)
<

(
a2 + b2 + c2 + d2

)2

=
(

a2 + b2 + c2

2
+

a2 + b2 + c2

2
+ d2

)2

≤
{(

a2 + b2 + c2

2

)2

+
(

a2 + b2 + c2

2

)2

+ d4

}(√
3
)2

.

The second inequality follows from the Cauchy-Schwarz inequality; hence, a4 +

b4 + c4 < 2(a2+b2+c2)
4

2

. Using the first part we can deduce that a, b and c can be
used to construct a triangle. Since the argument we used is symmetric in a, b, c
and d, we obtain the result.

There is a technique that helps to transform one inequality between the
lengths of the sides of a triangle into an inequality between positive numbers (of
course related to the sides).This is called the Ravi transformation.

If the incircle (I, r) of the triangle ABC is tangent to the sides BC, CA
and AB at the points X , Y and Z, respectively, we have that x = AZ = Y A,
y = ZB = BX and z = XC = CY .

�

�

�

�

B C

A

I

X

Y
Z

x x

y

y z

z

It is easily seen that a = y + z, b = z + x, c = x + y, x = s − a, y = s − b and
z = s− c, where s = a+b+c

2 .

Let us now see how to use the Ravi transformation in the following example.
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Example 2.2.3. The lengths of the sides a, b and c of a triangle satisfy

(b + c− a)(c + a− b)(a + b− c) ≤ abc.

First, we have that

(b + c− a)(c + a− b)(a + b− c) = 8(s− a)(s− b)(s− c) = 8xyz,

on the other hand
abc = (x + y)(y + z)(z + x).

Thus, the inequality is equivalent to

8xyz ≤ (x + y)(y + z)(z + x). (2.1)

The last inequality follows from Exercise 1.26.

Example 2.2.4. (APMO, 1996) Let a, b, c be the lengths of the sides of a triangle,
prove that

√
a + b− c +

√
b + c− a +

√
c + a− b ≤ √a +

√
b +

√
c.

If we set a = y + z, b = z + x, c = x + y, we can deduce that a + b− c = 2z,
b + c− a = 2x, c + a− b = 2y. Hence, the inequality is equivalent to

√
2x +

√
2y +

√
2z ≤ √x + y +

√
y + z +

√
z + x.

Now applying the inequality between the arithmetic mean and the quadratic mean
(see Exercise 1.68), we get

√
2x +

√
2y +

√
2z =

√
2x +

√
2y

2
+
√

2y +
√

2z

2
+
√

2z +
√

2x

2

≤
√

2x + 2y

2
+

√
2y + 2z

2
+

√
2z + 2x

2

=
√

x + y +
√

y + z +
√

z + x.

Moreover, the equality holds if and only if x = y = z, that is, if and only if
a = b = c.

Also, it is possible to express the area of a triangle ABC, its inradius, its
circumradius and its semiperimeter in terms of x, y, z. Since a = x + y, b = y + z
and c = z + x, we first obtain that s = a+b+c

2 = x + y + z. Using Heron’s formula
for the area of a triangle, we get

(ABC) =
√

s(s− a)(s− b)(s− c) =
√

(x + y + z)xyz. (2.2)

The formula (ABC) = sr leads us to

r =
(ABC)

s
=

√
(x + y + z)xyz

x + y + z
=

√
xyz

x + y + z
.
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Finally, from (ABC) = abc
4R we get

R =
(x + y)(y + z)(z + x)
4
√

(x + y + z)xyz
.

Example 2.2.5. (India, 2003) Let a, b, c be the side lengths of a triangle ABC. If
we construct a triangle A′B′C′ with side lengths a + b

2 , b + c
2 , c + a

2 , prove that
(A′B′C′) ≥ 9

4 (ABC).

Since a = y + z, b = z + x and c = x + y, the side lengths of the triangle
A′B′C′ are a′ = x+2y+3z

2 , b′ = 3x+y+2z
2 , c′ = 2x+3y+z

2 . Using Heron’s formula for
the area of a triangle, we get

(A′B′C′) =

√
3(x + y + z)(2x + y)(2y + z)(2z + x)

16
.

Applying the AM -GM inequality to show that 2x+y ≥ 3 3
√

x2y, 2y+z ≥ 3 3
√

y2z,
2z + x ≥ 3 3

√
z2x, will help to reach the inequality

(A′B′C′) ≥
√

3(x + y + z)27(xyz)
16

=
9
4
(ABC).

Equation (2.2) establishes the last equality.

Exercise 2.18. Let a, b and c be the lengths of the sides of a triangle, prove that

3(ab + bc + ca) ≤ (a + b + c)2 ≤ 4(ab + bc + ca).

Exercise 2.19. Let a, b and c be the lengths of the sides of a triangle, prove that

ab + bc + ca ≤ a2 + b2 + c2 ≤ 2(ab + bc + ca).

Exercise 2.20. Let a, b and c be the lengths of the sides of a triangle, prove that

2
(
a2 + b2 + c2

) ≤ (a + b + c)2.

Exercise 2.21. Let a, b and c be the lengths of the sides of a triangle, prove that

3
2
≤ a

b + c
+

b

c + a
+

c

a + b
< 2.

Exercise 2.22. (IMO, 1964) Let a, b and c be the lengths of the sides of a triangle,
prove that

a2 (b + c− a) + b2(c + a− b) + c2(a + b− c) ≤ 3abc.



58 Geometric Inequalities

Exercise 2.23. Let a, b and c be the lengths of the sides of a triangle, prove that

a
(
b2 + c2 − a2

)
+ b

(
c2 + a2 − b2

)
+ c

(
a2 + b2 − c2

) ≤ 3abc.

Exercise 2.24. (IMO, 1983) Let a, b and c be the lengths of the sides of a triangle,
prove that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

Exercise 2.25. Let a, b and c be the lengths of the sides of a triangle, prove that∣∣∣∣a− b

a + b
+

b− c

b + c
+

c− a

c + a

∣∣∣∣ <
1
8
.

Exercise 2.26. The lengths a, b and c of the sides of a triangle satisfy ab+bc+ca = 3.
Prove that

3 ≤ a + b + c ≤ 2
√

3.

Exercise 2.27. Let a, b, c be the lengths of the sides of a triangle, and let r be the
inradius of the triangle. Prove that

1
a

+
1
b

+
1
c
≤
√

3
2r

.

Exercise 2.28. Let a, b, c be the lengths of the sides of a triangle, and let s be the
semiperimeter of the triangle. Prove that

(i) (s− a)(s− b) < ab,

(ii) (s− a)(s− b) + (s− b)(s− c) + (s− c)(s− a) ≤ ab + bc + ca

4
.

Exercise 2.29. If a, b, c are the lengths of the sides of an acute triangle, prove that∑
cyclic

√
a2 + b2 − c2

√
a2 − b2 + c2 ≤ a2 + b2 + c2,

where
∑

cyclic stands for the sum over all cyclic permutations of (a, b, c).

Exercise 2.30. If a, b, c are the lengths of the sides of an acute triangle, prove that∑
cyclic

√
a2 + b2 − c2

√
a2 − b2 + c2 ≤ ab + bc + ca,

where
∑

cyclic represents the sum over all cyclic permutations of (a, b, c).
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2.3 The use of inequalities in the geometry of the
triangle

A problem which shows the use of inequalities in the geometry of the triangle was
introduced in the International Mathematical Olympiad in 1961; for this problem
there are several proofs and its applications are very broad, as will be seen later
on. Meanwhile, we present it here as an example.

Example 2.3.1. If a, b and c are the lengths of the sides of a triangle with area
(ABC), then 4

√
3(ABC) ≤ a2 + b2 + c2.

Since an equilateral triangle of side-length a has area equal to
√

3
4 a2, the

equality in the example holds for this case; hence we will try to compare what
happens in any triangle with what happens in an equilateral triangle of side length
a.

B C

A

Dd e

bc
h

Let BC = a. If AD is the altitude of the triangle at A, its length h can be expressed
as h =

√
3

2 a + y, where y measures its difference in comparison with the length
of the altitude of the equilateral triangle. We also set d = a

2 − x and e = a
2 + x,

where x can be interpreted as the difference that the projection of A on BC has
with respect to the projection of A on BC in an equilateral triangle, which in this
case is the midpoint of BC. We obtain

a2 + b2 + c2 − 4
√

3(ABC) = a2 + h2 +
(a

2
+ x

)2

+ h2 +
(a

2
− x

)2

− 4
√

3
ah

2

=
3
2
a2 + 2h2 + 2x2 − 2

√
3 a

(√
3

2
a + y

)

=
3
2
a2 + 2

(√
3

2
a + y

)2

+ 2x2 − 3a2 − 2
√

3ay

=
3
2
a2 +

3
2
a2 + 2

√
3ay + 2y2 + 2x2 − 3a2 − 2

√
3ay

= 2(x2 + y2) ≥ 0.

Moreover, the equality holds if and only if x = y = 0, that is, when the triangle is
equilateral.
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Let us give another proof for the previous example. Let ABC be a triangle,
with side-lengths a ≥ b ≥ c, and let A′ be a point such that A′BC is an equilateral
triangle with side-length a. If we take d = AA′, then d measures, in a manner,
how far is ABC from being an equilateral triangle.

A

A′

B C
a

b
c

a

d

Using the cosine law we can deduce that

d2 = a2 + c2 − 2ac cos(B − 60◦)

= a2 + c2 − 2ac(cosB cos 60◦ + sin B sin 60◦)

= a2 + c2 − ac cosB − 2
√

3
ac sin B

2

= a2 + c2 − ac

(
a2 + c2 − b2

2ac

)
− 2
√

3(ABC)

=
a2 + b2 + c2

2
− 2
√

3(ABC).

But d2 ≥ 0, hence we can deduce that 4
√

3(ABC) ≤ a2 + b2 + c2, which is what
we wanted to prove. Moreover, the equality holds if d = 0, that is, if A′ = A or,
equivalently, if ABC is equilateral.

It is quite common to find inequalities that involve elements of the triangle
among mathematical olympiad problems. Some of them are based on the following
inequality, which is valid for positive numbers a, b, c (see Exercise 1.36 of Section
1.3):

(a + b + c)
(

1
a

+
1
b

+
1
c

)
≥ 9. (2.3)

Moreover, we recall that the equality holds if and only if a = b = c.

Another inequality, which has been very helpful to solve geometric-related
problems, is Nesbitt’s inequality (see Example 1.4.8 of Section 1.4). It states that
for a, b, c positive numbers, we always have

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
. (2.4)
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The previous inequality can be proved using inequality (2.3) as follows:

a

b + c
+

b

c + a
+

c

a + b
=

a + b + c

b + c
+

a + b + c

c + a
+

a + b + c

a + b
− 3

= (a + b + c)
(

1
b + c

+
1

c + a
+

1
a + b

)
− 3

=
1
2

[(a + b) + (b + c) + (c + a)] ·
(

1
b + c

+
1

c + a
+

1
a + b

)
− 3

≥ 9
2
− 3 =

3
2
.

The equality holds if and only if a + b = b + c = c + a, or equivalently, if a=b=c.

Let us now observe some examples of geometric inequalities where such re-
lationships are employed.

Example 2.3.2. Let ABC be an equilateral triangle of side length a, let M be a
point inside ABC and let D, E, F be the projections of M on the sides BC, CA
and AB, respectively. Prove that

(i)
1

MD
+

1
ME

+
1

MF
≥ 6

√
3

a
,

(ii)
1

MD + ME
+

1
ME + MF

+
1

MF + MD
≥ 3

√
3

a
.

�

A

B C

EF

D

M

Let x = MD, y = ME and z = MF . Remember that we denote the area of
the triangle ABC as (ABC), then (ABC) = (BCM) + (CAM) + (ABM), hence
ah = ax + ay + az, where h =

√
3

2 a represents the length of the altitude of ABC.
Therefore, h = x + y + z. (This result is known as Viviani’s lemma; see Section
2.8). Using inequality (2.3) we can deduce that

h

(
1
x

+
1
y

+
1
z

)
≥ 9 and, after solving, that

1
x

+
1
y

+
1
z
≥ 9

h
=

6
√

3
a

.
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To prove the second part, using inequality (2.3), we can establish that

(x + y + y + z + z + x)
(

1
x + y

+
1

y + z
+

1
z + x

)
≥ 9.

Therefore, 1
x+y + 1

y+z + 1
z+x ≥ 9

2h = 3
√

3
a .

Example 2.3.3. If ha, hb and hc are the lengths of the altitudes of the triangle
ABC, whose incircle has center I and radius r, we have

(i)
r

ha
+

r

hb
+

r

hc
= 1,

(ii) ha + hb + hc ≥ 9r.

In order to prove the first equation, observe that r
ha

= r·a
ha·a = (IBC)

(ABC) . Simi-

larly, r
hb

= (ICA)
(ABC) ,

r
hc

= (IAB)
(ABC) . Adding the three equations, we have that

r

ha
+

r

hb
+

r

hc
=

(IBC)
(ABC)

+
(ICA)
(ABC)

+
(IAB)
(ABC)

=
(IBC) + (ICA) + (IAB)

(ABC)
= 1.

A

B C

I

r

ha

The desired inequality is a straightforward consequence of inequality (2.3), since
(ha + hb + hc)

(
1

ha
+ 1

hb
+ 1

hc

)
· r ≥ 9r.

Example 2.3.4. Let ABC be a triangle with altitudes AD, BE, CF and let H be
its orthocenter. Prove that

(i)
AD

HD
+

BE

HE
+

CF

HF
≥ 9,

(ii)
HD

HA
+

HE

HB
+

HF

HC
≥ 3

2
.



2.3 The use of inequalities in the geometry of the triangle 63

A

B C

H

E
F

D

To prove part (i), consider S = (ABC), S1 = (HBC), S2 = (HCA), S3 =
(HAB). Since triangles ABC and HBC share the same base, their area ratio is
equal to their altitude ratio, that is, S1

S = HD
AD . Similarly, S2

S = HE
BE and S3

S = HF
CF .

Then, HD
AD + HE

BE + HF
CF = 1.

Using inequality (2.3) we can state that(
AD

HD
+

BE

HE
+

CF

HF

)(
HD

AD
+

HE

BE
+

HF

CF

)
≥ 9.

If we substitute the equality previously calculated, we get (i).
Moreover, the equality holds if and only if HD

AD = HE
BE = HF

CF = 1
3 , that is,

if S1 = S2 = S3 = 1
3S. To prove the second part observe that HD

HA = HD
AD−HD =

S1
S−S1

= S1
S2+S3

, and similarly, HE
HB = S2

S3+S1
and HF

HC = S3
S1+S2

, then using Nesbitt’s
inequality leads to HD

HA + HE
HB + HF

HC ≥ 3
2 .

Example 2.3.5. (Korea, 1995) Let ABC be a triangle and let L, M , N be points
on BC, CA and AB, respectively. Let P , Q and R be the intersection points of
the lines AL, BM and CN with the circumcircle of ABC, respectively. Prove that

AL

LP
+

BM

MQ
+

CN

NR
≥ 9.

Let A′ be the midpoint of BC, let P ′ be the midpoint of the arc BC, let D
and D′ be the projections of A and P on BC, respectively.

It is clear that AL
LP = AD

PD′ ≥ AD
P ′A′ . Thus, the minimum value of AL

LP + BM
MQ + CN

NR
is attained when P , Q and R are the midpoints of the arcs BC, CA and AB. This
happens when AL, BM and CN are the internal angle bisectors of the triangle
ABC. Hence, without loss of generality, we will assume that AL, BM and CN
are the internal angle bisectors of ABC. Since AL is an internal angle bisector, we
have6

BL =
ca

b + c
, LC =

ba

b + c
and AL2 = bc

(
1−

(
a

b + c

)2
)

.

6See [6, pages 74 and 105] or [9, pages 10,11].
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A

B C
A′

L

P

D

P ′

D′

Moreover,

AL

LP
=

AL2

AL · LP
=

AL2

BL · LC
=

(bc)
(

1−
(

a
b+c

)2
)

a2bc
(b+c)2

=
(b + c)2 − a2

a2
.

Similarly, for the internal angle bisectors BM and CN , we have

BM

MQ
=

(c + a)2 − b2

b2
and

CN

NR
=

(a + b)2 − c2

c2
.

Therefore,

AL

LP
+

BM

MQ
+

CN

NR
=

(
b + c

a

)2

+
(

c + a

b

)2

+
(

a + b

c

)2

− 3

≥ 1
3

(
b + c

a
+

c + a

b
+

a + b

c

)2

− 3

≥ 1
3

(6)2 − 3 = 9.

The first inequality follows from the convexity of the function f(x) = x2 and the
second inequality from relations in the form a

b + b
a ≥ 2. Observe that equality

holds if and only if a = b = c.
Another way to finish the problem is the following:(

b + c

a

)2

+
(

c + a

b

)2

+
(

a + b

c

)2

− 3

=
(

a2

b2
+

b2

a2

)
+

(
b2

c2
+

c2

b2

)
+

(
c2

a2
+

a2

c2

)
+ 2

(
ab

c2
+

bc

a2
+

ca

b2

)
− 3

≥ 2 · 3 + 2 · 3− 3 = 9.
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Here we made use of the fact that a2

b2 + b2

a2 ≥ 2 and that ab
c2 + bc

a2 + ca
b2 ≥

3 3
√

(ab)(bc)(ca)
a2b2c2 = 3.

Example 2.3.6. (Shortlist IMO, 1997) The lengths of the sides of the hexagon
ABCDEF satisfy AB = BC, CD = DE and EF = FA. Prove that

BC

BE
+

DE

DA
+

FA

FC
≥ 3

2
.

A

B

C

F

E
D

a

b
c

Set a = AC, b = CE and c = EA. Ptolemy’s inequality (see Exercise 2.11), applied
to the quadrilateral ACEF , guarantees that AE ·FC ≤ FA ·CE +AC ·EF . Since
EF = FA, we have that c · FC ≤ FA · b + FA · a. Therefore,

FA

FC
≥ c

a + b
.

Similarly, we can deduce the inequalities

BC

BE
≥ a

b + c
and

DE

DA
≥ b

c + a
.

Hence, BC
BE + DE

DA + FA
FC ≥ a

b+c + b
c+a + c

a+b ≥ 3
2 ; the last inequality is Nesbitt’s

inequality.

Exercise 2.31. Let a, b, c be the lengths of the sides of a triangle, prove that:

(i)
a

b + c− a
+

b

c + a− b
+

c

a + b− c
≥ 3,

(ii)
b + c− a

a
+

c + a− b

b
+

a + b− c

c
≥ 3.

Exercise 2.32. Let AD, BE, CF be the altitudes of the triangle ABC and let PQ,
PR, PS be the distances from a point P to the sides BC, CA, AB, respectively.
Prove that

AD

PQ
+

BE

PR
+

CF

PS
≥ 9.
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Exercise 2.33. Through a point O inside a triangle of area S three lines are drawn
in such a way that every side of the triangle intersects two of them. These lines
divide the triangle into three triangles with common vertex O and areas S1, S2

and S3, and three quadrilaterals. Prove that

(i)
1
S1

+
1
S2

+
1
S3
≥ 9

S
,

(ii)
1
S1

+
1
S2

+
1
S3
≥ 18

S
.

Exercise 2.34. The cevians AL, BM and CN of the triangle ABC concur in P .
Prove that AP

PL + BP
PM + CP

PN = 6 if and only if P is the centroid of the triangle.

Exercise 2.35. The altitudes AD, BE, CF intersect the circumcircle of the triangle
ABC in D′, E′ and F ′, respectively. Prove that

(i)
AD

DD′
+

BE

EE′
+

CF

FF ′
≥ 9,

(ii)
AD

AD′
+

BE

BE′
+

CE

CF ′
≥ 9

4
.

Exercise 2.36. In the triangle ABC, let la, lb, lc be the lengths of the internal
bisectors of the angles of the triangle, and let s and r be the semiperimeter and
the inradius of ABC. Prove that

(i) lalblc ≤ rs2,

(ii) lalb + lblc + lcla ≤ s2,

(iii) l2a + l2b + l2c ≤ s2.

Exercise 2.37. Let ABC be a triangle and let M , N , P be arbitrary points on the
line segments BC, CA, AB, respectively. Denote the lengths of the sides of the
triangle by a, b, c and the circumradius by R. Prove that

bc

AM
+

ca

BN
+

ab

CP
≤ 6R.

Exercise 2.38. Let ABC be a triangle with side-lengths a, b, c. Let ma, mb and
mc be the lengths of the medians from A, B and C, respectively. Prove that

max {a ma, b mb, c mc} ≤ sR,

where R is the radius of the circumcircle and s is the semiperimeter.

2.4 Euler’s inequality and some applications

Theorem 2.4.1 (Euler’s theorem). Given the triangle ABC, where O is the cir-
cumcenter, I the incenter, R the circumradius and r the inradius, then

OI2 = R2 − 2Rr.
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Proof. Let us give a proof7 that depends only on Pythagoras theorem and the fact
that the circumcircle of the triangle BCI has center D, the midpoint of the arc8

BC. For the proof we will use directed segments.

�
�
�

A

B C

D

M

O

Q
I

Let M be the midpoint of BC and let Q be the orthogonal projection of I on the
radius OD. Then

OB2 −OI2 = OB2 −DB2 + DI2 −OI2

= OM2 −MD2 + DQ2 −QO2

= (MO + DM) (MO −DM) + (DQ + QO)(DQ−QO)
= DO(MO + MD + DQ + OQ)
= R(2MQ) = 2Rr.

Therefore OI2 = R2 − 2Rr. �

As a consequence of the last theorem we obtain the following inequality.

Theorem 2.4.2 (Euler’s inequality). R ≥ 2r. Moreover, R = 2r if and only if the
triangle is equilateral.9

7Another proof can be found in [6, page 122] or [9, page 29].
8The proof can be found in [6, observation 3.2.7, page 123] or [1, page 76].
9There are direct proofs for the inequality (that is, without having to use Euler’s formula).

One of them is the following: the nine-point circle of a triangle is the circumcircle of the medial
triangle A′B′C′. Because this triangle is similar to ABC with ratio 2:1, we can deduce that the
radius of the nine-point circle is R

2
. Clearly, a circle that intersects the three sides of a triangle

must have a greater radius than the radius of the incircle, therefore R
2
≥ r.
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Theorem 2.4.3. In a triangle ABC, with circumradius R, inradius r and semipe-
rimeter s, it happens that

r ≤ s

3
√

3
≤ R

2
.

Proof. We will use the fact that10 (ABC) = abc
4R = sr. Using the AM -GM

inequality, we can deduce that 2s = a + b + c ≥ 3 3
√

abc = 3 3
√

4Rrs. Thus,
8s3 ≥ 27(4Rrs) ≥ 27(8r2s), since R ≥ 2r. Therefore, s ≥ 3

√
3r.

The second inequality, s
3
√

3
≤ R

2 , is equivalent to a+b+c ≤ 3
√

3R. But using

the sine law, this is equivalent to sinA + sin B + sin C ≤ 3
√

3
2 . Observe that the

last inequality holds because the function f(x) = sin x is concave on [0, π], thus
sin A+sin B+sin C

3 ≤ sin
(

A+B+C
3

)
= sin 60◦ =

√
3

2 . �
Exercise 2.39. Let a, b and c be the lengths of the sides of a triangle, prove that

(a + b− c)(b + c− a)(c + a− b) ≤ abc.

Exercise 2.40. Let a, b and c be the lengths of the sides of a triangle, prove that

1
ab

+
1
bc

+
1
ca
≥ 1

R2
,

where R denotes the circumradius.

Exercise 2.41. Let A, B and C be the measurements of the angles in each of the
vertices of the triangle ABC, prove that

1
sin A sin B

+
1

sinB sin C
+

1
sin C sinA

≥ 4.

Exercise 2.42. Let A, B and C be the measurements of the angles in each of the
vertices of the triangle ABC, prove that(

sin
A

2

)(
sin

B

2

)(
sin

C

2

)
≤ 1

8
.

Exercise 2.43. Let ABC be a triangle. Call A, B and C the angles in the vertices
A, B and C, respectively. Let a, b and c be the lengths of the sides of the triangle
and let R be the radius of the circumcircle. Prove that(

2A

π

) 1
a
(

2B

π

) 1
b
(

2C

π

) 1
c

≤
(

2
3

)√
3

R

.

Theorem 2.4.4 (Leibniz’s theorem). In a triangle ABC with sides of length a, b
and c, and with circumcenter O, centroid G and circumradius R, the following
holds:

OG2 = R2 − 1
9
(
a2 + b2 + c2

)
.

10See [6, page 97] or [9, page 13].
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Proof. Let us use Stewart’s theorem which states11 that if L is a point on the side
BC of a triangle ABC and if AL = l, BL = m, LC = n, then a

(
l2 + mn

)
=

b2m + c2n.

�
�

A

B C
A′

G
O

R

Applying Stewart’s theorem to the triangle OAA′ to find the length of OG, where
A′ is the midpoint of BC, we get

AA′
(
OG2 + AG ·GA′

)
= A′O2 · AG + AO2 ·GA′.

Since
AO = R, AG =

2
3
AA′ and GA′ =

1
3
AA′,

substituting we get

OG2 +
2
9
(A′A)2 = A′O2 · 2

3
+ R2 · 1

3
.

On the other hand12, since (A′A)2 = 2(b2+c2)−a2

4 and A′O2 = R2 − a2

4 , we can
deduce that

OG2 =
(

R2 − a2

4

)
2
3

+
1
3
R2 − 2

9

(
2
(
b2 + c2

)− a2

4

)

= R2 − a2

6
− 2

(
b2 + c2

)− a2

18

= R2 − a2 + b2 + c2

9
.

�
One consequence of the last theorem is the following inequality.

Theorem 2.4.5 (Leibniz’s nequality). In a triangle ABC with side-lengths a, b and
c, with circumradius R, the following holds:

9R2 ≥ a2 + b2 + c2.

11For a proof see [6, page 96] or [9, page 6].
12See [6, page 83] or [9, page 10].
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Moreover, equality holds if and only if O = G, that is, when the triangle is equi-
lateral.

Example 2.4.6. In a triangle ABC with sides of length a, b and c, it follows that

4
√

3(ABC) ≤ 9abc

a + b + c
.

Using that 4R (ABC) = abc, we have the following equivalences:

9R2 ≥ a2 + b2 + c2 ⇔ a2b2c2

16(ABC)2
≥ a2 + b2 + c2

9
⇔ 4(ABC) ≤ 3abc√

a2 + b2 + c2
.

Cauchy-Schwarz inequality says that a + b + c ≤ √3
√

a2 + b2 + c2, hence

4
√

3(ABC) ≤ 9abc

a + b + c
.

Exercise 2.44. Let A, B and C be the measurements of the angles in each of the
vertices of the triangle ABC, prove that

sin2A + sin2B + sin2C ≤ 9
4
.

Exercise 2.45. Let a, b and c be the lengths of the sides of a triangle, prove that

4
√

3(ABC) ≤ 3 3
√

a2b2c2.

Exercise 2.46. Suppose that the incircle of ABC is tangent to the sides BC, CA,
AB, at D, E, F , respectively. Prove that

EF 2 + FD2 + DE2 ≤ s2

3
,

where s is the semiperimeter of ABC.

Exercise 2.47. Let a, b, c be the lenghts of the sides of a triangle ABC and let ha,
hb, hc be the lenghts of the altitudes over BC, CA, AB, respectively. Prove that

a2

hbhc
+

b2

hcha
+

c2

hahb
≥ 4.

2.5 Symmetric functions of a, b and c

The lengths of the sides a, b and c of a triangle have a very close relationship with
s, r and R, the semiperimeter, the inradius and the circumradius of the triangle,
respectively. The relationships that are most commonly used are

a + b + c = 2s, (2.5)
ab + bc + ca = s2 + r2 + 4rR, (2.6)

abc = 4Rrs. (2.7)
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The first is the definition of s and the third follows from the fact that the area of
the triangle is abc

4R = rs. Using Heron’s formula for the area of a triangle, we have
the relationship s(s− a)(s− b)(s− c) = r2s2, hence

s3 − (a + b + c)s2 + (ab + bc + ca)s− abc = r2s.

If we substitute (2.5) and (2.7) in this equality, after simplifying we get that

ab + bc + ca = s2 + r2 + 4Rr.

Now, since any symmetric polynomial in a, b and c can be expressed as a polyno-
mial in terms of (a + b + c), (ab + bc + ca) and (abc), it can also be expressed as a
polynomial in s, r and R. For instance,

a2 + b2 + c2 = (a + b + c)2 − 2(ab + bc + ca) = 2
(
s2 − r2 − 4Rr

)
,

a3 + b3 + c3 = (a + b + c)3 − 3(a + b + c)(ab + bc + ca) + 3abc

= 2
(
s3 − 3r2s− 6Rrs

)
.

These transformations help to solve different problems, as will be seen later
on.

Lemma 2.5.1. If A, B and C are the measurements of the angles within each of
the vertices of the triangle ABC, we have that cosA + cosB + cosC = r

R + 1.

Proof.

cosA + cosB + cosC =
b2 + c2 − a2

2bc
+

c2 + a2 − b2

2ca
+

a2 + b2 − c2

2ab

=
a
(
b2 + c2

)
+ b

(
c2 + a2

)
+ c

(
a2 + b2

)− (
a3 + b3 + c3

)
2abc

=
(a + b + c) (a2 + b2 + c2)− 2(a3 + b3 + c3)

2abc

=
4s

(
s2 − r2 − 4Rr

)− 4
(
s3 − 3r2s− 6Rrs

)
8Rrs

=

(
s2 − r2 − 4Rr

)− (s2 − 3r2 − 6Rr)
2Rr

=
2r2 + 2Rr

2Rr
=

r

R
+ 1.

�
Example 2.5.2. If A, B and C are the measurements of the angles in each of the
vertices of the triangle ABC, we have that cosA + cosB + cosC ≤ 3

2 .

Lemma 2.5.1 guarantees that cosA+cosB+cos C = r
R +1, and using Euler’s

inequality, R ≥ 2r, we get the result.
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We can give another direct proof. Observe that,

a(b2+c2−a2)+b(c2+a2−b2)+c(a2+b2−c2) = (b+c−a)(c+a−b)(a+b−c)+2abc.

Then,

cosA + cosB + cosC =
b2 + c2 − a2

2bc
+

c2 + a2 − b2

2ca
+

a2 + b2 − c2

2ab

=
(b + c− a)(c + a− b)(a + b− c)

2abc
+ 1,

and since (b + c− a)(c + a− b)(a + b− c) ≤ abc, we have the result.

Example 2.5.3. (IMO, 1991) Let ABC be a triangle, let I be its incenter and let
L, M , N be the intersections of the internal angle bisectors of A, B, C with BC,
CA, AB, respectively. Prove that 1

4 < AI
AL

BI
BM

CI
CN ≤ 8

27 .

�

B C

A

I

L

M

Using the angle bisector theorem BL
LC = AB

CA = c
b and the fact that BL +

LC = a, we can deduce that BL = ac
b+c and LC = ab

b+c . Again, the angle bisector
theorem applied to the internal angle bisector BI of the angle ∠ABL gives us
IL
AI = BL

AB = ac
(b+c)c = a

b+c . Hence,

AL

AI
=

AI + IL

AI
= 1 +

IL

AI
= 1 +

a

b + c
=

a + b + c

b + c
.

Then, AI
AL = b+c

a+b+c .13 Similarly, BI
BM = c+a

a+b+c and CI
CN = a+b

a+b+c . Therefore, the
inequality that we have to prove in terms of a, b and c is

1
4

<
(b + c)(c + a)(a + b)

(a + b + c)3
≤ 8

27
.

The AM -GM inequality guarantees that

(b + c)(c + a)(a + b) ≤
(

(b + c) + (c + a) + (a + b)
3

)3

=
8
27

(a + b + c)3,

13Another way to prove the identity is as follows. Consider α = (ABI), β = (BCI) and

γ = (CAI). It is clear that AI
AL

= α+γ
α+β+γ

=
r(c+b)

r(a+c+b)
= c+b

a+c+b
.



2.5 Symmetric functions of a, b and c 73

hence the inequality on the right-hand side is now evident.
To prove the inequality on the left-hand side, first note that

(b + c)(c + a)(a + b)
(a + b + c)3

=
(a + b + c)(ab + bc + ca)− abc

(a + b + c)3
.

Substitute above, using equations (2.5), (2.6) and (2.7), to get

(b + c)(c + a)(a + b)
(a + b + c)3

=
2s(s2 + r2 + 4Rr)− 4Rrs

8s3

=
2s3 + 2sr2 + 4Rrs

8s3
=

1
4

+
2r2 + 4Rr

8s2
>

1
4
.

We can also use the Ravi transformation a = y + z, b = z + x, c = x + y, to reach
the final result in the following way:

(b + c)(c + a)(a + b)
(a + b + c)3

=
(x + y + z + x)(x + y + z + y)(x + y + z + z)

8(x + y + z)3

=
1
8

(
1 +

x

x + y + z

)(
1 +

y

x + y + z

)(
1 +

z

x + y + z

)

=
1
8

(
1 +

x + y + z

x + y + z
+

xy + yz + zx

x + y + z
+

xyz

x + y + z

)
>

1
4
.

Exercise 2.48. Let A, B and C be the values of the angles in each one of the
vertices of the triangle ABC, prove that

sin2 A

2
+ sin2 B

2
+ sin2 C

2
≥ 3

4
.

Exercise 2.49. Let a, b and c be the lengths of the sides of a triangle. Using the
tools we have studied in this section, prove that

4
√

3(ABC) ≤ 9abc

a + b + c
.

Exercise 2.50. Let a, b and c be the lengths of the sides of a triangle. Using the
tools presented in this section, prove that

4
√

3(ABC) ≤ 3 3
√

a2b2c2.

Exercise 2.51. (IMO, 1961) Let a, b and c be the lengths of the sides of a triangle,
prove that

4
√

3(ABC) ≤ a2 + b2 + c2.

Exercise 2.52. Let a, b and c be the lengths of the sides of a triangle, prove that

4
√

3(ABC) ≤ a2 + b2 + c2 − (a− b)2 − (b− c)2 − (c− a)2 .
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Exercise 2.53. Let a, b and c be the lengths of the sides of a triangle, prove that

4
√

3(ABC) ≤ ab + bc + ca.

Exercise 2.54. Let a, b and c be the lengths of the sides of a triangle, prove that

4
√

3(ABC) ≤ 3(a + b + c)abc

ab + bc + ca
.

Exercise 2.55. Let a, b and c be the lengths of the sides of a triangle. If a+b+c = 1,
prove that

a2 + b2 + c2 + 4abc <
1
2
.

Exercise 2.56. Let a, b and c be the lengths of the sides of a triangle, let R and r
be the circumradius and the inradius, respectively, prove that

(b + c− a)(c + a− b)(a + b− c)
abc

=
2r

R
.

Exercise 2.57. Let a, b and c be the lengths of the sides of a triangle and let R be
the circumradius, prove that

3
√

3R ≤ a2

b + c− a
+

b2

c + a− b
+

c2

a + b− c
.

Exercise 2.58. Let a, b and c be the lengths of the sides of a triangle. Set x = b+c−a
2 ,

y = c+a−b
2 and z = a+b−c

2 . If τ1 = x + y + z, τ2 = xy + yz + zx and τ3 = xyz,
verify the following relationships.

(1) (a− b)2 + (b− c)2 + (c− a)2 = (x− y)2 + (y − z)2 + (z − x)2 = 2(τ2
1 − 3τ2).

(2) a + b + c = 2τ1.

(3) a2 + b2 + c2 = 2τ2
1 − 2τ2.

(4) ab + bc + ca = τ2
1 + τ2.

(5) abc = τ1τ2 − τ3.

(6) 16(ABC)2 = 2(a2b2 + b2c2 + c2a2)− (a4 + b4 + c4) = 16r2s2 = 16τ1τ3.

(7) R =
τ1τ2 − τ3

4
√

τ1τ3
.

(8) r =
√

τ3

τ1
.

(9) τ1 = s, τ2 = r(4R + r), τ3 = r2s.
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2.6 Inequalities with areas and perimeters

We begin this section with the following example.

Example 2.6.1. (Austria–Poland, 1985) If ABCD is a convex quadrilateral of area
1, then

AB + BC + CD + DA + AC + BD ≥ 4 +
√

8.

Set a = AB, b = BC, c = CD, d = DA, e = AC and f = BD. The area of
the quadrilateral ABCD is (ABCD) = ef sin θ

2 , where θ is the angle between the
diagonals, which makes it clear that 1 = ef sin θ

2 ≤ ef
2 .

Since (ABC) = ab sin B
2 ≤ ab

2 and (CDA) = cd sin D
2 ≤ cd

2 , we can deduce that
1 = (ABCD) ≤ ab+cd

2 . Similarly, 1 = (ABCD) ≤ bc+da
2 . These two inequalities

imply that ab + bc + cd + da ≥ 4.

Finally, since (e + f)2 = 4ef + (e − f)2 ≥ 4ef ≥ 8 and (a + b + c + d)2 =
4(a + c)(b + d) + ((a + c)− (b + d))2 ≥ 4(a + c)(b + d) = 4(ab + bc + cd + da) ≥ 16,
we can deduce that a + b + c + d + e + f ≥ 4 +

√
8.

Example 2.6.2. (Iberoamerican, 1992) Using the triangle ABC, construct a hexa-
gon H with vertices A1, A2, B1, B2, C1, C2 as shown in the figure. Show that the
area of the hexagon H is at least thirteen times the area of the triangle ABC.

B C

A

A1
A2

B1

B2

C1

C2
a

aa

b
b

b

c
c

c

It is clear, using the area formula (ABC) = ab sin C
2 , that

(A1A2B1B2C1C2) =(A1BC2) + (A2CB1) + (B2AC1) + (AA1A2)
+ (BB1B2) + (CC1C2)− 2(ABC)

=
(c + a)2sin B

2
+

(a + b)2sin C

2
+

(b + c)2sin A

2

+
a2sin A

2
+

b2sin B

2
+

c2sin C

2
− 2(ABC)
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=
(a2 + b2 + c2)(sin A + sin B + sinC)

2
+ ca sin B

+ ab sinC + b c sinA− 2(ABC)

=
(a2 + b2 + c2)(sin A + sin B + sinC)

2
+ 4(ABC).

Therefore, (A1A2B1B2C1C2) ≥ 13(ABC) if and only if

(a2 + b2 + c2)(sinA + sinB + sinC)
2

≥ 9(ABC) =
9abc

4R
.

Using the sine law, sinA
a = 1

2R , we can prove that the inequality is true if and only

if (a2+b2+c2)(a+b+c)
4R ≥ 9abc

4R , that is,

(a2 + b2 + c2)(a + b + c) ≥ 9abc.

The last inequality can be deduced from the AM -GM inequality, from the re-
arrangement inequality or by using Tchebychev’s inequality. Moreover, the equal-
ity holds only in the case a = b = c.

Example 2.6.3. (China, 1988 and 1993) Consider two concentric circles of radii R
and R1 (R1 > R) and a convex quadrilateral ABCD inscribed in the small circle.
The extensions of AB, BC, CD and DA intersect the large circle at C1, D1, A1

and B1, respectively. Show that

(i)
perimeter of A1B1C1D1

perimeter of ABCD
≥ R1

R
;

(ii)
(A1B1C1D1)

(ABCD)
≥

(
R1

R

)2

.

A1

B1

C1

D1

A

B

C

D

O
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To prove (i), we use Ptolemy’s inequality (see Exercise 2.11) applied to the
quadrilaterals OAB1C1, OBC1D1, OCD1A1 and ODA1B1, which implies that

AC1 · R1 ≤ B1C1 ·R + AB1 · R1,

BD1 · R1 ≤ C1D1 ·R + BC1 · R1, (2.8)
CA1 · R1 ≤ D1A1 ·R + CD1 ·R1,

DB1 · R1 ≤ A1B1 ·R + DA1 · R1.

Then, when we add these inequalities together and write AC1, BD1, CA1 and
DB1, and express them as AB + BC1, BC + CD1, CD + DA1 and DA + AB1,
respectively, we get

R1· perimeter (ABCD) + R1(BC1 + CD1 + DA1 + AB1)
≤ R · perimeter (A1B1C1D1) + R1(AB1 + BC1 + CD1 + DA1).

Therefore,
perimeter (A1B1C1D1)

perimeter (ABCD)
≥ R1

R
.

To prove (ii), we use the fact that (ABCD) = ad sin A+bc sin A
2 = sin A

2 (ad+bc)
and also that (ABCD) = ab sin B+cd sin B

2 = sin B
2 (ab+ cd), where A = ∠DAB and

B = ∠ABC.

A1

B1

C1

D1

A

B

C

D

O

a

b

c

d

x

y
z

w

Since (AB1C1) = x(a+y)sin (180◦−A)
2 = x(a+y)sin A

2 , we can produce the identity
(AB1C1)
(ABCD) = x(a+y)

ad+bc . Similarly, (BC1D1)
(ABCD) = y(b+z)

ab+cd , (CD1A1)
(ABCD) = z(c+w)

ad+bc , (DA1B1)
(ABCD) =

w(d+x)
ab+cd . Then,

(A1B1C1D1)
(ABCD)

= 1 +
x(a + y) + z(w + c)

ad + bc
+

y(b + z) + w(d + x)
ab + cd

.

The power of a point in the larger circle with respect to the small circle is equal to
R2

1−R2. In particular, the power of A1, B1, C1 and D1 is the same. On the other
hand, we know that these powers are w(w + c), x(x + d), y(y + a) and z(z + b),
respectively.
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Substituting this in the previous equation implies that the area ratio is

(A1B1C1D1)
(ABCD)

=1+(R2
1−R2)

[
x

y(ad + bc)
+

z

w(ad + bc)
+

y

z(ab + cd)
+

w

x(ab + cd)

]
.

Using the AM -GM inequality allows us to deduce that

(A1B1C1D1)
(ABCD)

≥ 1 +
4(R2

1 −R2)√
(ad + bc)(ab + cd)

.

Since 2
√

(ad + bc)(ab + cd) ≤ ad+bc+ab+cd = (a+c)(b+d) ≤ 1
4 (a+b+c+d)2 ≤

(4
√

2R)2

4 = 8R2, the first two inequalities follow from the AM -GM inequality, and
the last one follows from the fact that, of all the quadrilaterals inscribed in a circle,
the square has the largest perimeter. Thus

(A1B1C1D1)
(ABCD)

≥ 1 +
4(R2

1 −R2)
4R2

=
(

R1

R

)2

.

Moreover, the equalities hold when ABCD is a square and only in this case. Since
in order to reduce inequalities (2.8) to identities, it must be the case that the four
quadrilaterals OAB1C1, OBC1D1, OCD1A1 and ODA1B1 are cyclic. Thus, OA
is an internal angle bisector of the angle BAD, and the same happens for OB,
OC and OD.

There are problems that, even when they are not presented in a geomet-
ric form, they invite us to search for geometric relationships, as in the following
example.

Example 2.6.4. If a, b, c are positive numbers with c < a and c < b, we can deduce
that

√
c(a− c) +

√
c(b− c) ≤ √ab.

Consider the isosceles triangles ABC and ACD, both sharing the common
side AC of length 2

√
c; we take the first triangle as having equal sides AB = BC

of length
√

a and the second one satisfying CD = DA with length
√

b.
The area of the quadrilateral ABCD is, on the one hand,

(ABCD) = (ABC) + (ACD) =
√

c(a− c) +
√

b(b− c);

and on the other hand, (ABCD) = 2(ABD) = 2
√

ab sin ∠BAD
2 .

This last procedure for calculating the area clearly proves that (ABCD) ≤√
ab, and thus the result is obtained.
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A

B

C

D

E

√
a

√
a

√
b

√
b

√
c

√
c

Another solution is as follows. Since AC and BD are perpendiculars, Py-
thagoras theorem implies that DE =

√
b− c and EB =

√
a− c. By Ptolemy’s

inequality (see Exercise 2.11), (
√

b− c +
√

a− c) · (2√c) ≤ √
a
√

b +
√

a
√

b and
then the result.

Exercise 2.59. On every side of a square with sides measuring 1, choose one point.
The four points will form a quadrilateral of sides of length a, b, c and d, prove that

(i) 2 ≤ a2 + b2 + c2 + d2 ≤ 4,

(ii) 2
√

2 ≤ a + b + c + d ≤ 4.

Exercise 2.60. On each side of a regular hexagon with sides measuring 1, we choose
one point. The six points form a hexagon of perimeter h. Prove that 3

√
3 ≤ h ≤ 6.

Exercise 2.61. Consider the three lines tangent to the incircle of a triangle ABC
which are parallel to the sides of the triangle; these, together with the sides of the
triangle, form a hexagon T . Prove that

the perimeter of T ≤ 2
3

the perimeter of (ABC).

Exercise 2.62. Find the radius of the circle of maximum area that can be covered
using three circles with radius 1.

Exercise 2.63. Find the radius of the circle of maximum area that can be covered
using three circles with radii r1, r2 and r3.

Exercise 2.64. Two disjoint squares are located inside a square of side 1. If the
lengths of the sides of the two squares are a and b, prove that a + b ≤ 1.

Exercise 2.65. A convex quadrilateral is inscribed in a circumference of radius 1,
in such a way that one of its sides is a diameter and the other sides have lengths
a, b and c. Prove that abc ≤ 1.



80 Geometric Inequalities

Exercise 2.66. Let ABCDE be a convex pentagon such that the areas of the
triangles ABC, BCD, CDE, DEA and EAB are equal. Prove that

(i)
(ABCDE)

4
< (ABC) <

(ABCDE)
3

,

(ii) (ABCDE) =
5 +

√
5

2
(ABC).

Exercise 2.67. If AD, BE and CF are the altitudes of the triangle ABC, prove
that

perimeter (DEF ) ≤ s,

where s is the semiperimeter.

Exercise 2.68. The lengths of the internal angle bisectors of a triangle are at most
1, show that the area of such a triangle is at most

√
3

3 .

Exercise 2.69. If a, b, c, d are the lengths of the sides of a convex quadrilateral,
show that

(i) (ABCD) ≤ ab + cd

2
,

(ii) (ABCD) ≤ ac + bd

2
and

(iii) (ABCD) ≤
(

a + c

2

)(
b + d

2

)
.

2.7 Erdős-Mordell Theorem

Theorem 2.7.1 (Pappus’s theorem). Let ABC be a triangle, AA′B′B and CC′A′′A
two parallelograms constructed on AC and AB such that both either are inside
or outside the triangle. Let P be the intersection of B′A′ with C′A′′. Construct
another parallelogram BP ′P ′′C on BC such that BP ′ is parallel to AP and of the
same length. Thus, we will have the following relationships between the areas:

(BP ′P ′′C) = (AA′B ′B) + (CC′A ′′A).

Proof. See the picture on the next page. �



2.7 Erdős-Mordell Theorem 81

P

A
A′

A′′

B

B′

C

C′

P ′ P ′′

Theorem 2.7.2 (Erdős-Mordell theorem). Let P be an arbitrary point inside or on
the boundary of the triangle ABC. If pa, pb, pc are the distances from P to the
sides of ABC, of lenghts a, b, c, respectively, then

PA + PB + PC ≥ 2 (pa + pb + pc) .

Moreover, the equality holds if and only if the triangle ABC is equilateral and P
is the circumcenter.

Proof (Kazarinoff). Let us reflect the triangle ABC on the internal bisector BL of
angle B. Let A′ and C′ be the reflections of A and C. The point P is not reflected.
Now, let us consider the parallelograms determined by B, P and A′, and by B, P
and C′.

�

P

A

CB

C′

A′

L

The sum of the areas of these parallelograms is cpa + apc and this is equal to the
area of the parallelogram A′P ′P ′′C′, where A′P ′ is parallel to BP and of the same
length. The area of A′P ′P ′′C′ is at most b · PB. Moreover, the areas are equal if
BP is perpendicular to A′C′ and this happens if and only if P is on BO, where
O is the circumcenter of ABC.14 Then,

cpa + apc ≤ bPB.

14BP is perpendicular to A′C′ if and only if ∠PBA′ = 90◦ − ∠A′, but ∠A′ = ∠A and
OBC = 90◦ −∠A, then P should be on BO.
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�

P

B

C′

A′c

pa

a

pc �

P

C′

P ′′

B

P ′

A′

b

Therefore,
PB ≥ c

b
pa +

a

b
pc.

Similarly,

PA ≥ b

a
pc +

c

a
pb and PC ≥ b

c
pa +

a

c
pb.

If we add together these inequalities, we have

PA + PB + PC ≥
(

b

c
+

c

b

)
pa +

( c

a
+

a

c

)
pb +

(
a

b
+

b

a

)
pc ≥ 2 (pa + pb + pc) ,

since b
c + c

b ≥ 2. Moreover, the equality holds if and only if a = b = c and P is on
AO, BO and CO, that is, if the triangle is equilateral and P = O. �
Example 2.7.3. Using the notation of the Erdős-Mordell theorem, prove that

aPA + bPB + cPC ≥ 4(ABC).

Consider the two parallelograms that are determined by B, C, P and B,
A, P as shown in the figure, and the parallelogram that is constructed following
Pappus’s theorem. It is clear that

bPB ≥ apa + cpc.

�

P

B

A

C

bc

a

pa

pc
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Similarly, it follows that

aPA ≥ bpb + cpc,
cPC ≥ apa + bpb.

Hence,
aPA + bPB + cPC ≥ 2(apa + bpb + cpc) = 4(ABC).

Example 2.7.4. Using the notation of the Erdős-Mordell theorem, prove that

paPA + pbPB + pcPC ≥ 2 (papb + pbpc + pcpa) .

As in the previous example, we have that aPA ≥ bpb + cpc. Hence,

paPA ≥ b

a
papb +

c

a
pcpa.

Similarly, we can deduce that pbPB ≥ a
b papb + c

bpbpc, pcPC ≥ a
c pcpa + b

cpbpc.
If we add together these three inequalities, we get

paPA + pbPB + pcPC ≥
(

a

b
+

b

a

)
papb +

(
b

c
+

c

b

)
pbpc +

( c

a
+

a

c

)
pcpa

≥ 2 (papb + pbpc + pcpa) .

Example 2.7.5. Using the notation of the Erdős-Mordell theorem, prove that

2
(

1
PA

+
1

PB
+

1
PC

)
≤ 1

pa
+

1
pb

+
1
pc

.

A

B C

P

A′

B′
C′

A1

B′1
C1

A′1

C′1

Let us apply inversion to the circle of center P and radius d = pb. If A′, B′, C′ are
the inverse points of A, B, C, respectively, and A′1, B′1, C′1 are the inverse points
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of A1, B1, C1, we can deduce that

PA · PA′ = PB · PB′ = PC · PC′ = d2,

PA1 · PA′1 = PB1 · PB′1 = PC1 · PC′1 = d2.

Moreover, A′, B′ and C′ are on B′1C
′
1, C′1A

′
1 and A′1B

′
1, respectively, and the

segments PA′, PB′ and PC′ are perpendicular to B′1C′1, C′1A′1 and A′1B′1, respec-
tively.

An application of the Erdős-Mordell theorem to the triangle A′1B
′
1C
′
1 shows

that PA′1 + PB′1 + PC′1 ≥ 2 (PA′ + PB′ + PC′).
Since

PA′1 =
d2

PA1
, PB′1 =

d2

PB1
, PC′1 =

d2

PC1
,

PC′ =
d2

PC
, PB′ =

d2

PB
, PA′ =

d2

PA
,

then

d2

(
1

PA1
+

1
PB1

+
1

PC1

)
≥ 2d2

(
1

PA
+

1
PB

+
1

PC

)
,

that is,

2
(

1
PA

+
1

PB
+

1
PC

)
≤

(
1
pa

+
1
pb

+
1
pc

)
.

Example 2.7.6. Using the notation of the Erdős-Mordell theorem, prove that

PA · PB · PC ≥ R

2r
(pa + pb) (pb + pc) (pc + pa) .

�

P

A

C1 CB

b
c

c

pa

pc

Let C1 be a point on BC such that BC1 = AB. Then AC1 = 2c sin B
2 , and

Pappus’s theorem implies that PB
(
2c sin B

2

) ≥ c pa + c pc. Therefore,

PB ≥ pa + pc

2 sin B
2

.
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Similarly,

PA ≥ pb + pc

2 sin A
2

and PC ≥ pa + pb

2 sin C
2

.

Then, after multiplication, we get

PA · PB · PC ≥ 1
8

1(
sin A

2

) (
sin B

2

) (
sin C

2

) (pa + pb) (pb + pc) (pc + pa) .

The solution of Exercise 2.42 helps us to prove that
(
sin A

2

) (
sin B

2

) (
sin C

2

)
= r

4R ,
then the result follows.

Example 2.7.7. (IMO, 1991) Let P be a point inside the triangle ABC. Prove that
at least one of the angles ∠PAB, ∠PBC, ∠PCA is less than or equal to 30◦.

Draw A1, B1 and C1, the projections of P on sides BC, CA and AB, re-
spectively. Using the Erdős-Mordell theorem we get PA + PB + PC ≥ 2PA1 +
2PB1 + 2PC1.

A

B C
A1

B1C1 P

Thus, one of the following inequalities will be satisfied:

PA ≥ 2PC1, PB ≥ 2PA1 or PC ≥ 2PB1.

If, for instance, PA ≥ 2PC1, we can deduce that 1
2 ≥ PC1

PA = sin ∠PAB, then
∠PAB ≤ 30◦ or ∠PAB ≥ 150◦. But, if ∠PAB ≥ 150◦, then it must be the case
that ∠PBC < 30◦ and thus in both cases the result follows.

Example 2.7.8. (IMO, 1996) Let ABCDEF be a convex hexagon such that AB
is parallel to DE, BC is parallel to EF and CD is parallel to FA. Let RA, RC ,
RE denote the circumradii of triangles FAB, BCD, DEF , respectively, and let
P denote the perimeter of the hexagon. Prove that

RA + RC + RE ≥ P
2

.

Let M , N and P be points inside the hexagon in such a way that MDEF ,
NFAB and PBCD are parallelograms. Let XY Z be the triangle formed by the
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lines through B, D, F and perpendicular to FA, BC, DE, respectively, where B
is on Y Z, D on ZX and F on XY . Observe that MNP and XY Z are similar
triangles.

X

Y Z
A

B

C

D

E

F

P M

N

Since the triangles DEF and DMF are congruent, they have the same circumra-
dius; moreover, since XM is the diameter of the circumcircle of triangle DMF ,
then XM = 2RE. Similarly, Y N = 2RA and ZP = 2RC . Thus, the inequality
that needs to be proven can be written as

XM + Y N + ZP ≥ BN + BP + DP + DM + FM + FN.

The case M = N = P is the Erdős-Mordell inequality, on which the rest of the
proof is based.

Let Y ′, Z ′ denote the reflections of Y and Z on the internal angle bisector
of X . Let G, H denote the feet of the perpendiculars of M and X on Y ′Z ′,
respectively.

X

Z ′ Y ′

D

H

F

G

M

Since (XY ′Z ′) = (XMZ ′) + (Z ′MY ′) + (Y ′MX), we obtain

XH · Y ′Z ′ = MF ·XZ ′ + MG · Y ′Z ′ + MD · Y ′X.



2.7 Erdős-Mordell Theorem 87

If we set x = Y ′Z ′, y = ZX ′, z = XY ′, the above equality becomes

xXH = xMG + zDM + yFM.

Since ∠XHG = 90◦, then XH = XG sin∠XGH ≤ XG. Moreover, using the
triangle inequality, XG ≤ XM + MG, we can deduce that

XM ≥ XH −MG =
z

x
DM +

y

x
FM.

Similarly,

Y N ≥ x

y
FN +

z

y
BN ,

ZP ≥ y

z
BP +

x

y
DP.

After adding together these three inequalities, we get

XM + Y N + ZP ≥ z

x
DM +

y

x
FM +

x

y
FN +

z

y
BN +

y

z
BP +

x

z
DP. (2.9)

Observe that

y

z
BP +

z

y
BN =

(
y

z
+

z

y

)(
BP + BN

2

)
+

(
y

z
− z

y

)(
BP −BN

2

)
.

Since the triangles XY Z and MNP are similar, we can define r as

r =
FM − FN

XY
=

BN −BP

Y Z
=

DP −DM

ZX
.

If we apply the inequality y
z + z

y ≥ 2, we get

y

z
BP +

z

y
BN =

(
y

z
+

z

y

)(
BP + BN

2

)
− r

2

(
yx

z
− zx

y

)

≥ BP + BN − r

2

(
yx

z
− zx

y

)
.

Similar inequalities hold for

x

y
FN +

y

x
FM ≥ FN + FM − r

2

(
xz

y
− yz

x

)
,

z

x
DM +

x

z
DP ≥ DM + DP − r

2

(zy

x
− xy

z

)
.

If we add the inequalities and substitute them in (2.9), we have

XM + Y N + ZP ≥ BN + BP + DP + DM + FM + FN,

which completes the proof.
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Exercise 2.70. Using the notation of the Erdős-Mordell theorem, prove that

PA · PB · PC ≥ 4R

r
papbpc.

Exercise 2.71. Using the notation of the Erdős-Mordell theorem, prove that

(i)
PA2

pbpc
+

PB2

pcpa
+

PC2

papb
≥ 12,

(ii)
PA

pb + pc
+

PB

pc + pa
+

PC

pa + pb
≥ 3,

(iii)
PA√
pbpc

+
PB√
pcpa

+
PC√
papb

≥ 6,

(iv) PA · PB + PB · PC + PC · PA ≥ 4(papb + pbpc + pcpa).

Exercise 2.72. Let ABC be a triangle, P be an arbitrary point in the plane and
let pa, pb y pc be the distances from P to the sides of a triangle of lengths a, b and
c, respectively. If, for example, P and A are on different sides of the segment BC,
then pa is negative, and we have a similar situation for the other cases. Prove that

PA + PB + PC ≥
(

b

c
+

c

b

)
pa +

( c

a
+

a

c

)
pb +

(
a

b
+

b

a

)
pc.

2.8 Optimization problems

In this section we present two classical examples known as the Fermat-Steiner
problem and the Fagnano problem.

The Fermat-Steiner problem. This problem seeks to find a point in the interior or
on the sides of a triangle such that the sum of the distances from the point to the
vertices of the triangle is minimum. We will present three solutions and point out
the methods used to solve the problem.

Torricelli’s solution. It takes as its starting point the following two lemmas.

Lemma 2.8.1 (Viviani’s lemma). The sum of the distances from an interior point
to the sides of an equilateral triangle is equal to the altitude of the triangle.

Proof. Let P be a point in the interior of the triangle ABC. Draw the triangle
A′B′C′ with sides parallel to the sides of ABC, with P onC′A′ and B′C′ on the
line through B and C.



2.8 Optimization problems 89

�

A

B C
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B′ C′L′

MN

L

PP ′ P ′′

M ′

If L, M and N are the feet of the perpendiculars of P on the sides, it is clear that
PM = NM ′, where M ′ is the intersection of PN with A′B′. Moreover, PM ′ is
the altitude of the equilateral triangle AP ′P . If A′P ′′ is the altitude of the triangle
AP ′P from A′, it is clear that PM ′ = A′P ′′. Let L′ be a point on B′C′ such that
A′L′ is the altitude of the triangle A′B′C′ from A′. Thus,

PL+PM +PN = PL+PN +NM ′ = PL+A′P ′′ = A′P ′′+P ′′L′ = A′L′. �

Next, we present another two proofs of Viviani’s lemma for the sake of com-
pleteness.

Observation 2.8.2. (i) The following is another proof of Viviani’s lemma which
is based on the use of areas. We have that (ABC) = (ABP ) + (BCP ) +
(CAP ). Then, if a is the length of the side of the triangle and h is the
length of its altitude, we have that ah = aPN + aPL + aPM , that is, h =
PN + PL + PM .

(ii) Another proof of Viviani’s lemma can be deduced from the following diagram.

�

A

B C

M
N

L

P

M ′
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Lemma 2.8.3. If ABC is a triangle with all angles less than or equal to 120◦, there
is a unique point P such that ∠APB = ∠BPC = ∠CPA = 120◦. The point P is
known as the Fermat point of the triangle.

Proof. First, we will proof the existence of P . On the sides AB and CA we con-
struct equilateral triangles ABC′ and CAB′. Their circumcircles intersect at A
and at another point that we denote as P .

B C

A

C′

B′

P

Since APCB′ is cyclic, we have that ∠CPA = 180◦−∠B′ = 120◦. Similarly, since
APBC′ is cyclic, ∠APB = 120◦. Finally, ∠BPC = 360◦ − ∠APB − ∠CPA =
360◦ − 120◦ − 120◦ = 120◦.

To prove the uniqueness, suppose that Q satisfies ∠AQB = ∠BQC =
∠CQA = 120◦. Since ∠AQB = 120◦, the point Q should be on the circumcircle
of ABC′. Similarly, it should be on the circumcircle of CAB′, hence Q = P . �

We will now study Torricelli’s solution to the Fermat-Steiner problem. Given
the triangle ABC with angles less than or equal to 120◦, construct the Fermat
point P , which satisfies ∠APB = ∠BPC = ∠CPA = 120◦. Now, through A, B
and C we draw perpendiculars to AP , BP and CP , respectively.

These perpendiculars determine a triangle DEF which is equilateral. This is
so because the quadrilateral PBDC is cyclic, having angles of 90◦ in B and C.
Now, since ∠BPC = 120◦, we can deduce that ∠BDC = 60◦. This argument can
be repeated for each angle. Therefore DEF is indeed equilateral.

We know that the distance from P to the vertices of the triangle ABC is
equal to the length of the altitude of the equilateral triangle DEF . Observe that
any other point Q inside the triangle ABC satisfies AQ ≥ A′Q, where A′Q is the
distance from Q to the side EF , similarly BQ ≥ B′Q and CQ ≥ C′Q. Therefore
AQ + BQ + CQ is greater than or equal to the altitude of DEF which is AP +
BP + CP , which in turn is equal to A′Q + B′Q + C′Q as can be seen by using
Viviani’s lemma.
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Hofmann-Gallai’s solution. This way of solving the problem uses the ingenious idea
of rotating the figure to place the three segments that we need next to each other,
in order to form a polygonal line and then add them together. Thus, when we join
the two extreme points with a segment of line, since this segment of line represents
the shortest path between them, it is then necessary to find the conditions under
which the polygonal line lies over such segment. This proof was provided by J.
Hofmann in 1929, but the method for proving had already been discovered and
should be attributed to the Hungarian Tibor Gallai. Let us recall this solution.

Consider the triangle ABC with a point P inside it; draw AP , BP and CP .
Next, rotate the figure with its center in B and through an angle of 60◦, in a
positive direction.

B C

A

C′

P ′

P60◦

We should point out several things. If C′ is the image of A and P ′ is the image
of P , the triangles BPP ′ and BAC′ are equilateral. Moreover, if AP = P ′C′

and BP = P ′B = P ′P , then AP + BP + CP = P ′C′ + P ′P + CP . The path
CP + PP ′ + P ′C is minimum when C, P , P ′ and C′ are collinear, which in turn
requires that ∠C′P ′B = 120◦ and ∠BPC = 120◦; but since ∠C′P ′B = ∠APB,



92 Geometric Inequalities

the point P should satisfy ∠APB = ∠BPC = 120◦ (and then also ∠CPA = 120◦).

An advantage of this solution is that it provides another description of the
Fermat point and another way of finding it. If we review the proof, we can see that
the point P is on the segment CC′, where C′ is the third vertex of the equilateral
triangle with side AB. But if instead of the rotation with center in B, we rotate
it with its center in C, we obtain another equilateral triangle AB′C and we can
conclude that P is on BB′. Hence we can find P as the intersection of BB′ and
CC′.

Steiner’s solution. When we solve maximum and minimum problems we are prin-
cipally faced with three questions, (i) is there a solution?, (ii) is there a unique
solution? (iii) what properties characterize the solution(s)? Torricelli’s solution
demonstrates that among all the points in the triangle, this particular point P ,
from which the three sides of the triangle are observed as having an angle of 120◦,
provides the minimum value of PA + PB + PC. In this sense, this point answers
the three questions we proposed and does so in an elegant way. However, the solu-
tion does not give us any clue as to why Torricelli chose this point, or what made
him choose that point; probably this will never be known. But in the following we
can consider a sequence of ideas that bring us to discover that the Fermat point
is the optimal point. These ideas belong to the Swiss geometer Jacob Steiner. Let
us first provide the following two lemmas.

Lemma 2.8.4 (Heron’s problem). Given two points A and B on the same side of
a line d, find the shortest path that begins at A, touches the line d and finishes at
B.

�

� B

P

A

d

The shortest path between A and B, touching the line d, can be found re-
flecting B on d to get a point B′; the segment AB′ intersects d at a point P ∗ that
makes AP ∗ + P ∗B represent the minimum between the numbers AP + PB, with
P on d.

To convince ourselves it is sufficient to observe that

AP ∗ + P ∗B = AP ∗ + P ∗B′ = AB′ ≤ AP + PB′ = AP + PB.

This point satisfies the following reflection principle: The incident angle is
equal to the reflection angle. It is evident that the point which has this property
is the minimum.
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Lemma 2.8.5 (Heron’s problem using a circle). Given two points A and B outside
the circle C, find the shortest path that starts at A, touches the circle and finishes
at B.

�

�

�

A

C

B

We will only give a sketch of the solution.
Let D be a point on C, then we have that the set {P : PA+PB = DA+DB}

is an ellipse ED with foci points A and B, and that the point D belongs to ED.
In general Ed = {P : PA + PB = d}, where d is a positive number, is an ellipse
with foci A and B (if d > AB). Moreover, these ellipses have the property that Ed

is a subset of the interior of Ed′ if and only if d < d′.
We would like to find a point Q on C such that the sum QA+QB is minimum.

The optimal point Q will belong to an ellipse, precisely to EQ. Such an ellipse EQ

does not intersect C in other point; in fact, if C′ is another common point of EQ

and C, then every point C′′ of the circumference arc between Q and C′ of C would
be in the interior of EQ, therefore C′′A + C′′B < QA + QB and so Q is not the
optimal point, that is, a contradiction.

Thus, the point Q that minimize AQ+QB should satisfy that the ellipse EQ

is tangent to C. The common tangent line to EQ and C happens to be perpendicular
to the radius CQ, where C is the center of C and, because of the reflection property
of the ellipse (the incidence angle is equal to the reflection angle), it follows that
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the line CQ is the internal bisector of the angle ∠AQB, that is, ∠BQC = ∠CQA.

�

A B

C

Q
α

β

Now let us go back to Steiner’s solution of the Fermat-Steiner problem. A
point P that makes the sum PA+PB +PC a minimum can be one of the vertices
A, B, C or a point of the triangle different from the vertices. In the first case, if
P is one of the vertices, then one term of the sum PA+ PB + PC is zero and the
other two are the lengths of the sides of the triangle ABC that have in common
the chosen vertex. Hence, the sum will be minimum when the chosen vertex is
opposite to the longest side of the triangle.

In order to analize the second case, Steiner follows the next idea (very useful
in optimization problems and one which can be taken to belong to the strategy of
“divide and conquer”), which is to keep fixed some of the variables and optimize
the rest. This procedure would provide conditions in the variables not fixed. Such
restrictions will act as restrains in the solution space until we reach the optimal
solution. Specifically, we proceed as follows. Suppose that PA is fixed; that is, P
belongs to the circle of center A and radius PA, where we need to find the point
P that makes the sum PB+PC minimum. Note that B should be located outside
of such circle, otherwise PA ≥ AB and, using the triangle inequality, PB +PC >
BC. From this, it follows that PA+PB = PC > AB+BC, which means B would
be a more suitable point (instead of P ). Similarly, C should be outside of such
circle. Now, since B and C are points outside the circle C = (A, PA), the optimal
point for the problem of minimizing PB + PC with the condition that P is on
the circle C is, by Lemma 2.8.5, a point Q on the circle C, such that this circle is
tangent to the ellipse with foci B and C in Q, and the point Q is such that the
angles ∠AQB and ∠CQA are equal. Since the role of A, B, C can be exchanged,
if now we fix B (and PB), then the optimal point Q will satisfy the condition
∠AQB = ∠BQC and therefore ∠AQB = ∠BQC = ∠CQA = 120◦. This means
Q should be the Fermat point. All the above work in the second case is to assure
that Q is inside of ABC, if the angles of the triangle are not greater than 120◦.

The Fagnano problem. The problem is to find an inscribed triangle of minimum
perimeter inside an acute triangle. We present two classical solutions, where the
reflection on lines play a central role. One is due to H. Schwarz and the other to
L. Fejer.
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Schwarz’s solution. The German mathematician Hermann Schwarz provided the
following solution to this problem for which he took as starting point two ob-
servations that we present as lemmas. These lemmas will demonstrate that the
inscribed triangle with the minimum perimeter is the triangle formed using the
feet of the altitudes of the triangle. Such a triangle is known as the ortic triangle.

Lemma 2.8.6. Let ABC be a triangle, and let D, E and F be the feet of the altitudes
on BC, CA and AB as they fall from the vertices A, B and C, respectively. Then
the triangles ABC, AEF , DBF and DEC are similar.

Proof. It is sufficient to see that the first two triangles are similar, since the other
cases are proved in a similar way.

�

B C
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E

F

H

D

Since these two triangles have a common angle at A, it is sufficient to see that
∠AEF = ∠ABC. But, since we know that ∠AEF +∠FEC = 180◦ and ∠ABC +
∠FEC = 180◦ because the quadrilateral BCEF is cyclic, then ∠AEF = ∠ABC.

�

Lemma 2.8.7. Using the notation of the previous lemma, we can deduce that the
reflection of D on AB is collinear with E and F , and the reflection of D on CA
is collinear with E and F .

Proof. It follows directly from the previous lemma. �
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D
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Using these elements we can now continue with the solution proposed by H.
Schwarz for the Fagnano problem.

We will now prove that the triangle with minimum perimeter is the ortic tri-
angle. Denote this triangle as DEF and consider another triangle LMN inscribed
in ABC.

B

C

A

E

F
D

B

A

C

A

B

F ′N N ′

M

L

Reflect the complete figure on the side BC, so that the resultant triangle is re-
flected on CA, then on AB, on BC and finally on CA.

We have in total six congruent triangles and within each of them we have the
ortic triangle and the inscribed triangle LMN . The side AB of the last triangle
is parallel to the side AB of the first, since as a result of the first reflection, the
side AB is rotated in a negative direction through an angle of 2B, and then in a
negative direction through an angle of 2A, the third reflection is invariant and the
fourth is rotated through an angle of 2B in a positive direction and in the fifth it
is also rotated in a positive direction through an angle of 2A. Thus the total angle
of rotation of AB is zero.

The segment FF ′ is twice the perimeter of the ortic triangle, since FF ′ is
composed of six pieces where each side of the ortic triangle is taken twice. Also,
the broken line NN ′ is twice the perimeter of LMN. Moreover, NN ′ is parallel to
the line FF ′ and of the same length, then since the length of the broken line NN ′

is greater than the length of the segment NN ′, we can deduce that the perimeter
of DEF is less than the perimeter of LMN.

The Fejer’s solution. The solution due to the Hungarian mathematician L.
Fejer also uses reflections. Let LMN be a triangle inscribed on ABC. Take both
the reflection L′ of the point L on the side CA, and L′′ the reflection of L on the
side AB, and draw the segments ML′ and NL′′. It is clear that LM = ML′ and
L′′N = NL. Hence the perimeter of LMN satisfies

LM + MN + NL = L′′N + NM + ML′ ≥ L′L′′.
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Thus, we can conclude that if we fix the point L, the points M and N that make
the minimum perimeter LMN are the intersections of L′L′′ with CA and AB,
respectively. Now, let us see which is the best option for the point L. We already
know that the perimeter of LMN is L′L′′, thus L should make this quantity a
minimum.

B C

A

M
N

L′

L′′

L

It is evident that AL = AL′ = AL′′ and that AC and AB are internal angle
bisectors of the angles LAL′ and L′′AL, respectively. Thus ∠L′′AL′ = 2∠BAC =
2α which is a fixed angle. The cosine law applied to the triangle AL′′L′ guarantees
that

(L′L′′)2 = (AL′)2 + (AL′′)2 − 2AL′ ·AL′′ cos 2α

= 2AL2(1− cos 2α).

Then, L′L′′ is minimum when AL is minimum, which will be the case when AL is
the altitude.15 A similar analysis using the points B and C will demonstrate that

15This would be enough to finish Fejer’s proof for the Fagnano’s problem. This is the case
because if AL is the altitude and L′L′′ intersects sides CA and AB in E and F , respectively, then
BE and CF are altitudes. Let us see why. The triangle AL′′L′ is isosceles with ∠L′′AL′ = 2∠A,
then ∠AL′L′′ = 90◦ −∠A and by symmetry ∠ELA = 90◦ −∠A. Therefore ∠CLE = ∠A. Then
AELB is a cyclic quadrilateral, therefore ∠AEB = ∠ALB = 90◦, which implies that BE is an
altitude. Similarly, it follows that CE is an altitude.
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BM and CN should also be altitudes. Thus, the triangle LMN with minimum
perimeter is the ortic triangle.

Exercise 2.73. Let ABCD be a convex cyclic quadrilateral. If O is the intersection
of the diagonals AC and BD, and P , Q, R, S are the feet of the perpendiculars of O
on the sides AB, BC, CD, DA, respectively, prove that PQRS is the quadrilateral
of minimum perimeter inscribed in ABCD.

Exercise 2.74. Let P be a point inside the triangle ABC. Let D, E and F be
the points of intersection of AP , BP and CP with the sides BC, CA and AB,
respectively. Determine P such that the area of the triangle DEF is maximum.

Exercise 2.75. (IMO, 1981) Let P be a point inside the triangle ABC. Let D, E,
F be the feet of the perpendiculars from P to the lines BC, CA, AB, respectively.
Find the point P that minimizes BC

PD + CA
PE + AB

PF .

Exercise 2.76. Let P , D, E and F be as in Exercise 2.75. For which point P is
the sum of BD2 + CE2 + AF 2 minimum?

Exercise 2.77. Let P , D, E and F be as in Exercise 2.75. For which point P is
the product of PD · PE · PF maximum?

Exercise 2.78. Let P be a point inside the triangle ABC. For which point P is the
sum of PA2 + PB2 + PC2 minimum?

Exercise 2.79. For every point P on the circumcircle of a triangle ABC, we draw
the perpendiculars PM and PN to the sides AB and CA, respectively. Determine
for which point P the length MN is maximum and find that length.

Exercise 2.80. (Turkey, 2000) Let ABC be an acute triangle with circumradius R;
let ha, hb and hc be the lengths of the altitudes AD, BE and CF , respectively.
Let ta, tb and tc be the lengths of the tangents from A, B and C, respectively, to
the circumcircle DEF . Prove that

t2a
ha

+
t2b
hb

+
t2c
hc
≤ 3

2
R.

Exercise 2.81. Let ha, hb, hc be the lengths of the altitudes of a triangle ABC,
and let pa, pb, pc be the distances from a point P to the sides BC, CA, AB,
respectively, where P is a point inside the triangle ABC. Prove that

(i)
ha

pa
+

hb

pb
+

hc

pc
≥ 9,

(ii) hahbhc ≥ 27papbpc,

(iii) (ha − pa)(hb − pb)(hc − pc) ≥ 8papbpc.

Exercise 2.82. If h is the length of the largest altitude of an acute triangle, then
r + R ≤ h.
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Exercise 2.83. Of all triangles with a common base and the same perimeter, the
isosceles triangle has the largest area.

Exercise 2.84. Of all triangles with a given perimeter, the one with largest area is
the equilateral triangle.

Exercise 2.85. Of all inscribed triangles on a given circle, the one with largest
perimeter is the equilateral triangle.

Exercise 2.86. If P is a point inside the triangle ABC, l = PA, m = PB and
n = PC, prove that

(lm + mn + nl)(l + m + n) ≥ a2l + b2m + c2n.

Exercise 2.87. (IMO, 1961) Let a, b and c be the lengths of the sides of a triangle
and let (ABC) be the area of that triangle, prove that

4
√

3(ABC) ≤ a2 + b2 + c2.

Exercise 2.88. Let (ABC) be the area of a triangle ABC and let F be the Fermat
point of the triangle. Prove that

4
√

3(ABC) ≤ (AF + BF + CF )2.

Exercise 2.89. Let P be a point inside the triangle ABC, prove that

PA + PB + PC ≥ 6r.

Exercise 2.90. (The area of the pedal triangle). For a triangle ABC and a point
P on the plane, we define the “pedal triangle” of P with respect to ABC as the
triangle A1B1C1 where A1, B1, C1 are the feet of the perpendiculars from P to
BC, CA, AB, respectively. Prove that

(A1B1C1) =
(R2 −OP 2)(ABC)

4R2
,

where O is the circumcenter. We can thus conclude that the pedal triangle of
maximum area is the medial triangle.



Chapter 3

Recent Inequality Problems

Problem 3.1. (Bulgaria, 1995) Let SA, SB and SC denote the areas of the reg-
ular heptagons A1A2A3A4A5A6A7, B1B2B3B4B5B6B7 and C1C2C3C4C5C6C7,
respectively. Suppose that A1A2 = B1B3 = C1C4, prove that

1
2

<
SB + SC

SA
< 2−√2.

Problem 3.2. (Czech and Slovak Republics, 1995) Let ABCD be a tetrahedron
such that

∠BAC + ∠CAD + ∠DAB = ∠ABC + ∠CBD + ∠DBA = 180◦.

Prove that CD ≥ AB.

Problem 3.3. (Estonia, 1995) Let a, b, c be the lengths of the sides of a triangle
and let α, β, γ be the angles opposite to the sides. Prove that if the inradius of
the triangle is r, then

a sin α + b sinβ + c sinγ ≥ 9r.

Problem 3.4. (France, 1995) Three circles with the same radius pass through a
common point. Let S be the set of points which are interior to at least two of the
circles. How should the three circles be placed so that the area of S is minimized?

Problem 3.5. (Germany, 1995) Let ABC be a triangle and let D and E be points
on BC and CA, respectively, such that DE passes through the incenter of ABC.
If S = area(CDE) and r is the inradius of ABC, prove that S ≥ 2r2.

Problem 3.6. (Ireland, 1995) Let A, X , D be points on a line with X between A
and D. Let B be a point such that ∠ABX = 120◦ and let C be a point between
B and X . Prove that 2AD ≥ √3 (AB + BC + CD).
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Problem 3.7. (Korea, 1995) A finite number of points on the plane have the prop-
erty that any three of them form a triangle with area at most 1. Prove that all
these points lie within the interior or on the sides of a triangle with area less than
or equal to 4.

Problem 3.8. (Poland, 1995) For a fixed positive integer n, find the minimum
value of the sum

x1 +
x2

2

2
+

x3
3

3
+ · · ·+ xn

n

n
,

given that x1, x2, . . . , xn are positive numbers satisfying that the sum of their
reciprocals is n.

Problem 3.9. (IMO, 1995) Let ABCDEF be a convex hexagon with AB = BC =
CD and DE = EF = FA such that ∠BCD = ∠EFA = π

3 . Let G and H be
points in the interior of the hexagon such that ∠AGB = ∠DHE = 2π

3 . Prove that

AG + GB + GH + DH + HE ≥ CF.

Problem 3.10. (Balkan, 1996) Let O be the circumcenter and G the centroid of the
triangle ABC. Let R and r be the circumradius and the inradius of the triangle.
Prove that OG ≤√

R(R− 2r).

Problem 3.11. (China, 1996) Suppose that x0 = 0, xi > 0 for i = 1, 2, . . . , n, and∑n
i=1 xi = 1. Prove that

1 ≤
n∑

i=1

xi√
1 + x0 + · · ·+ xi−1

√
xi + · · ·+ xn

<
π

2
.

Problem 3.12. (Poland, 1996) Let n ≥ 2 and a1, a2, . . . , an ∈ R+ with
∑n

i=1 ai = 1.
Prove that for x1, x2, . . . , xn ∈ R+, with

∑n
i=1 xi = 1, we have

2
∑
i<j

xixj ≤ n− 2
n− 1

+
n∑

i=1

aix
2
i

1− ai
.

Problem 3.13. (Romania, 1996) Let x1, x2, . . . , xn, xn+1 be positive real numbers
with x1 + x2 + · · ·+ xn = xn+1. Prove that

n∑
i=1

√
xi(xn+1 − xi) ≤

√√√√ n∑
i=1

xn+1(xn+1 − xi).

Problem 3.14. (St. Petersburg, 1996) Let M be the intersection of the diagonals
of a cyclic quadrilateral, let N be the intersection of the segments that join the
opposite midpoints and let O be the circumcenter. Prove that OM ≥ ON .
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Problem 3.15. (Austria–Poland, 1996) If w, x, y and z are real numbers satisfying
w + x + y + z = 0 and w2 + x2 + y2 + z2 = 1, prove that

−1 ≤ wx + xy + yz + zw ≤ 0.

Problem 3.16. (Taiwan, 1997) Let a1, . . . , an be positive numbers such that
ai−1+ai+1

ai
is an integer for all i = 1, . . . , n, a0 = an, an+1 = a1 and n ≥ 3.

Prove that

2n ≤ an + a2

a1
+

a1 + a3

a2
+

a2 + a4

a3
+ · · ·+ an−1 + a1

an
≤ 3n.

Problem 3.17. (Taiwan, 1997) Let ABC be an acute triangle with circumcenter
O and circumradius R. Prove that if AO intersects the circumcircle of OBC at D,
BO intersects the circumcircle of OCA at E and CO intersects the circumcircle
of OAB at F , then OD ·OE ·OF ≥ 8R3.

Problem 3.18. (APMO, 1997) Let ABC be a triangle. The internal bisector of the
angle in A meets the segment BC at X and the circumcircle at Y . Let la = AX

AY .
Define lb and lc in the same way. Prove that

la

sin2 A
+

lb

sin2 B
+

lc

sin2 C
≥ 3

with equality if and only if the triangle is equilateral.

Problem 3.19. (IMO, 1997) Let x1, . . . , xn be real numbers satisfying
|x1 + · · ·+ xn| = 1 and |xi| ≤ n+1

2 for all i = 1, . . . , n. Prove that there exists
a permutation y1, . . . , yn of x1, . . . , xn such that

|y1 + 2y2 + · · ·+ nyn| ≤ n + 1
2

.

Problem 3.20. (Czech and Slovak Republics, 1998) Let a, b, c be positive real
numbers. A triangle exists with sides of lengths a, b and c if and only if there exist
numbers x, y and z such that

y

z
+

z

y
=

a

x
,

z

x
+

x

z
=

b

y
,

x

y
+

y

x
=

c

z
.

Problem 3.21. (Hungary, 1998) Let ABCDEF be a centrally symmetric hexagon
and let P , Q, R be points on the sides AB, CD, EF , respectively. Prove that the
area of the triangle PQR is at most one-half of the area of the hexagon.

Problem 3.22. (Iran, 1998) Let x1, x2, x3 and x4 be positive real numbers such
that x1x2x3x4 = 1. Prove that

x3
1 + x3

2 + x3
3 + x3

4 ≥ max
{

x1 + x2 + x3 + x4,
1
x1

+
1
x2

+
1
x3

+
1
x4

}
.
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Problem 3.23. (Iran, 1998) Let x, y, z be numbers greater than 1 and such that
1
x + 1

y + 1
z = 2. Prove that

√
x + y + z ≥ √x− 1 +

√
y − 1 +

√
z − 1.

Problem 3.24. (Mediterranean, 1998) Let ABCD be a square inscribed in a circle.
If M is a point on the arc AB, prove that

MC ·MD ≥ 3
√

3MA ·MB.

Problem 3.25. (Nordic, 1998) Let P be a point inside an equilateral triangle ABC
of length side a. If the lines AP , BP and CP intersect the sides BC, CA and AB
of the triangle at L, M and N , respectively, prove that

PL + PM + PN < a.

Problem 3.26. (Spain, 1998) A line that contains the centroid G of the triangle
ABC intersects the side AB at P and the side CA at Q. Prove that

PB

PA
· QC

QA
≤ 1

4
.

Problem 3.27. (Armenia, 1999) Let O be the center of the circumcircle of the
acute triangle ABC. The lines CO, AO and BO intersect the circumcircles of
the triangles AOB, BOC and AOC, for the second time, at C1, A1 and B1,
respectively. Prove that

AA1

OA1
+

BB1

OB1
+

CC1

OC1
≥ 9

2
.

Problem 3.28. (Balkan, 1999) Let ABC be an acute triangle and let L, M , N be
the feet of the perpendiculars from the centroid G of ABC to the sides BC, CA,
AB, respectively. Prove that

4
27

<
(LMN)
(ABC)

≤ 1
4
.

Problem 3.29. (Belarus, 1999) Let a, b, c be positive real numbers such that
a2 + b2 + c2 = 3. Prove that

1
1 + ab

+
1

1 + bc
+

1
1 + ca

≥ 3
2
.

Problem 3.30. (Czech and Slovak Republics, 1999) For arbitrary positive numbers
a, b and c, prove that

a

b + 2c
+

b

c + 2a
+

c

a + 2b
≥ 1.
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Problem 3.31. (Ireland, 1999) Let a, b, c, d be positive real numbers with a + b +
c + d = 1. Prove that

a2

a + b
+

b2

b + c
+

c2

c + d
+

d2

d + a
≥ 1

2
.

Problem 3.32. (Italy, 1999) Let D and E be given points on the sides AB and CA
of the triangle ABC such that DE is parallel to BC and DE is tangent to the
incircle of ABC. Prove that

DE ≤ AB + BC + CA

8
.

Problem 3.33. (Poland, 1999) Let D be a point on the side BC of the triangle ABC
such that AD > BC. The point E on CA is defined by the equation AE

EC = BD
AD−BC .

Prove that AD > BE.

Problem 3.34. (Romania, 1999) Let a, b, c be positive real numbers such that
ab + bc + ca ≤ 3abc. Prove that a + b + c ≤ a3 + b3 + c3.

Problem 3.35. (Romania, 1999) Let x1, x2, . . . , xn be positive real numbers such
that x1x2 · · ·xn = 1. Prove that

1
n− 1 + x1

+
1

n− 1 + x2
+ · · ·+ 1

n− 1 + xn
≤ 1.

Problem 3.36. (Romania, 1999) Let n ≥ 2 be a positive integer and x1, y1, x2, y2,
. . . , xn, yn be positive real numbers such that x1 + x2 + · · ·+ xn ≥ x1y1 + x2y2 +
· · ·+ xnyn. Prove that

x1 + x2 + · · ·+ xn ≤ x1

y1
+

x2

y2
+ · · ·+ xn

yn
.

Problem 3.37. (Russia, 1999) Let a, b and c be positive real numbers with abc = 1.
Prove that if a + b + c ≤ 1

a + 1
b + 1

c , then an + bn + cn ≤ 1
an + 1

bn + 1
cn for every

positive integer n.

Problem 3.38. (Russia, 1999) Let {x} = x − [x] denote the fractional part of x.
Prove that for every natural number n,

n2∑
j=1

{√
j
}
≤ n2 − 1

2
.

Problem 3.39. (Russia, 1999) The positive real numbers x and y satisfy x2 + y3 ≥
x3 + y4. Prove that

x3 + y3 ≤ 2.
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Problem 3.40. (St. Petersburg, 1999) Let x0 > x1 > · · · > xn be real numbers.
Prove that

x0 +
1

x0 − x1
+

1
x1 − x2

+ · · ·+ 1
xn−1 − xn

≥ xn + 2n.

Problem 3.41. (Turkey, 1999) Prove that (a + 3b)(b + 4c)(c + 2a) ≥ 60abc for all
real numbers 0 ≤ a ≤ b ≤ c.

Problem 3.42. (United Kingdom, 1999) Three non-negative real numbers a, b and
c satisfy a + b + c = 1. Prove that

7(ab + bc + ca) ≤ 2 + 9abc.

Problem 3.43. (USA, 1999) Let ABCD be a convex cyclic quadrilateral. Prove
that

|AB − CD|+ |AD −BC| ≥ 2 |AC −BD| .
Problem 3.44. (APMO, 1999) Let {an} be a sequence of real numbers satisfying
ai+j ≤ ai + aj for all i, j = 1, 2, . . .. Prove that

a1 +
a2

2
+ · · ·+ an

n
≥ an for all n ∈ N.

Problem 3.45. (IMO, 1999) Let n ≥ 2 be a fixed integer.

(a) Determine the smallest constant C such that

∑
1≤i<j≤n

xixj(x2
i + x2

j) ≤ C

⎛
⎝ ∑

1≤i≤n

xi

⎞
⎠4

for all nonnegative real numbers x1, . . . , xn.

(b) For this constant C determine when the equality occurs.

Problem 3.46. (Czech and Slovak Republics, 2000) Prove that for all positive real
numbers a and b,

3

√
a

b
+ 3

√
b

a
≤ 3

√
2(a + b)

(
1
a

+
1
b

)
.

Problem 3.47. (Korea, 2000) The real numbers a, b, c, x, y, z satisfy a ≥ b ≥ c > 0
and x ≥ y ≥ z > 0. Prove that

a2x2

(by + cz)(bz + cy)
+

b2y2

(cz + ax)(cx + az)
+

c2z2

(ax + by)(ay + bx)
≥ 3

4
.

Problem 3.48. (Mediterranean, 2000) Let P , Q, R, S be the midpoints of the sides
BC, CD, DA, AB, respectively, of the convex quadrilateral ABCD. Prove that

4(AP 2 + BQ2 + CR2 + DS2) ≤ 5(AB2 + BC2 + CD2 + DA2).
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Problem 3.49. (Austria–Poland, 2000) Let x, y, z be non-negative real numbers
such that x + y + z = 1. Prove that

2 ≤ (1− x2)2 + (1− y2)2 + (1 − z2)2 ≤ (1 + x)(1 + y)(1 + z).

Problem 3.50. (IMO, 2000) Let a, b, c be positive real numbers with abc = 1.
Prove that (

a− 1 +
1
b

)(
b− 1 +

1
c

)(
c− 1 +

1
a

)
≤ 1.

Problem 3.51. (Balkan, 2001) Let a, b, c be positive real numbers such that abc ≤
a + b + c. Prove that

a2 + b2 + c2 ≥
√

3 abc.

Problem 3.52. (Brazil, 2001) Prove that (a + b)(a + c) ≥ 2
√

abc(a + b + c), for all
positive real numbers a, b, c.

Problem 3.53. (Poland, 2001) Prove that the inequality

n∑
i=1

ixi ≤
(

n
2

)
+

n∑
i=1

xi
i

holds for every integer n≥2 and for all non-negative real numbers x1, x2, . . . , xn.

Problem 3.54. (Austria–Poland, 2001) Prove that

2 <
a + b

c
+

b + c

a
+

c + a

b
− a3 + b3 + c3

abc
≤ 3,

where a, b, c are the lengths of the sides of a triangle.

Problem 3.55. (IMO, 2001) Prove that for a, b and c positive real numbers we
have

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Problem 3.56. (Short list IMO, 2001) Let x1, x2, . . ., xn be real numbers, prove
that

x1

1 + x2
1

+
x2

1 + x2
1 + x2

2

+ · · ·+ xn

1 + x2
1 + · · ·+ x2

n

<
√

n.

Problem 3.57. (Austria, 2002) Let a, b, c be real numbers such that there exist
α, β, γ ∈ {−1, 1} with αa + βb + γc = 0. Determine the smallest positive value of(

a3+b3+c3

abc

)2

.

Problem 3.58. (Balkan, 2002) Prove that

2
b(a + b)

+
2

c(b + c)
+

2
a(c + a)

≥ 27
(a + b + c)2

for positive real numbers a, b, c.
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Problem 3.59. (Canada, 2002) Prove that for all positive real numbers a, b, c,

a3

bc
+

b3

ca
+

c3

ab
≥ a + b + c,

and determine when equality occurs.

Problem 3.60. (Ireland, 2002) Prove that

x

1− x
+

y

1− y
+

z

1− z
≥ 3 3

√
xyz

1− 3
√

xyz

for positive real numbers x, y, z less than 1.

Problem 3.61. (Rioplatense, 2002) Let a, b, c be positive real numbers. Prove that(
a

b + c
+

1
2

)(
b

c + a
+

1
2

)(
c

a + b
+

1
2

)
≥ 1.

Problem 3.62. (Rioplatense, 2002) Let a, b, c be positive real numbers. Prove that

a + b

c2
+

b + c

a2
+

c + a

b2
≥ 9

a + b + c
+

1
a

+
1
b

+
1
c
.

Problem 3.63. (Russia, 2002) Prove that
√

x +
√

y +
√

z ≥ xy + yz + zx for x, y,
z positive real numbers such that x + y + z = 3.

Problem 3.64. (APMO, 2002) Let a, b, c be positive real numbers satisfying 1
a +

1
b + 1

c = 1. Prove that

√
a + bc +

√
b + ca +

√
c + ab ≥

√
abc +

√
a +

√
b +

√
c.

Problem 3.65. (Ireland, 2003) The lengths a, b, c of the sides of a triangle are such
that a + b + c = 2. Prove that

1 ≤ ab + bc + ca− abc ≤ 1 +
1
27

.

Problem 3.66. (Romania, 2003) Prove that in any triangle ABC the following
inequality holds:

1
mbmc

+
1

mcma
+

1
mamb

≤
√

3
S

,

where S is the area of the triangle and ma, mb, mc are the lengths of the medians.

Problem 3.67. (Romania, 2003) Let a, b, c, d be positive real numbers with abcd =
1. Prove that

1 + ab

1 + a
+

1 + bc

1 + b
+

1 + cd

1 + c
+

1 + da

1 + d
≥ 4.
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Problem 3.68. (Romania, 2003) In a triangle ABC, let la, lb, lc be the lengths of
the internal angle bisectors, and let s be the semiperimeter. Prove that

la + lb + lc ≤
√

3s.

Problem 3.69. (Russia, 2003) Let a, b, c be positive real numbers with
a + b + c = 1. Prove that

1
1− a

+
1

1− b
+

1
1− c

≥ 2
1 + a

+
2

1 + b
+

2
1 + c

.

Problem 3.70. (APMO, 2003) Prove that

(an + bn)
1
n + (bn + cn)

1
n + (cn + an)

1
n < 1 +

2
1
n

2
,

where n > 1 is an integer and a, b, c are the side-lengths of a triangle with unit
perimeter.

Problem 3.71. (IMO, 2003) Given n > 2 and real numbers x1 ≤ x2 ≤ · · · ≤ xn,
prove that ⎛

⎝∑
i,j

|xi − xj |
⎞
⎠2

≤ 2
3
(n2 − 1)

∑
i,j

(xi − xj)2,

where equality holds if and only if x1, x2, . . . , xn form an arithmetic progression.

Problem 3.72. (Short list Iberoamerican, 2004) If the positive numbers x1, x2, . . . ,
xn satisfy x1 + x2 + · · ·+ xn = 1, prove that

x1

x2(x1 + x2 + x3)
+

x2

x3(x2 + x3 + x4)
+ · · ·+ xn

x1(xn + x1 + x2)
≥ n2

3
.

Problem 3.73. (Czech and Slovak Republics, 2004) Let P (x) = ax2 + bx + c be
a quadratic polynomial with non-negative real coefficients. Prove that for any
positive number x,

P (x)P
(

1
x

)
≥ (P (1))2.

Problem 3.74. (Croatia, 2004) Prove that the inequality

a2

(a + b)(a + c)
+

b2

(b + c)(b + a)
+

c2

(c + a)(c + b)
≥ 3

4

holds for all positive real numbers a, b, c.

Problem 3.75. (Estonia, 2004) Let a, b, c be positive real numbers such that
a2 + b2 + c2 = 3. Prove that

1
1 + 2ab

+
1

1 + 2bc
+

1
1 + 2ca

≥ 1.
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Problem 3.76. (Iran, 2004) Let x, y, z be real numbers such that xyz = −1, prove
that

x4 + y4 + z4 + 3(x + y + z) ≥ x2

y
+

x2

z
+

y2

x
+

y2

z
+

z2

x
+

z2

y
.

Problem 3.77. (Korea, 2004) Let R and r be the circumradius and the inradius
of the acute triangle ABC, respectively. Suppose that ∠A is the largest angle of
ABC. Let M be the midpoint of BC and let X be the intersection of the tangents
to the circumcircle of ABC at B and C. Prove that

r

R
≥ AM

AX
.

Problem 3.78. (Moldova, 2004) Prove that for all real numbers a, b, c ≥ 0, the
following inequality holds:

a3 + b3 + c3 ≥ a2
√

bc + b2
√

ca + c2
√

ab.

Problem 3.79. (Ukraine, 2004) Let x, y, z be positive real numbers with x+y+z =
1. Prove that

√
xy + z +

√
yz + x +

√
zx + y ≥ 1 +

√
xy +

√
yz +

√
zx.

Problem 3.80. (Ukraine, 2004) Let a, b, c be positive real numbers such that
abc ≥ 1. Prove that

a3 + b3 + c3 ≥ ab + bc + ca.

Problem 3.81. (Romania, 2004) Find all positive real numbers a, b, c which satisfy
the inequalities

4(ab + bc + ca)− 1 ≥ a2 + b2 + c2 ≥ 3(a3 + b3 + c3).

Problem 3.82. (Romania, 2004) The real numbers a, b, c satisfy a2 + b2 + c2 = 3.
Prove the inequality

|a|+ |b|+ |c| − abc ≤ 4.

Problem 3.83. (Romania, 2004) Consider the triangle ABC and let O be a point in
the interior of ABC. The straight lines OA, OB, OC meet the sides of the triangle
at A1, B1, C1, respectively. Let R1, R2, R3 be the radii of the circumcircles of
the triangles OBC, OCA, OAB, respectively, and let R be the radius of the
circumcircle of the triangle ABC. Prove that

OA1

AA1
R1 +

OB1

BB1
R2 +

OC1

CC1
R3 ≥ R.

Problem 3.84. (Romania, 2004) Let n ≥ 2 be an integer and let a1, a2, . . . , an be
real numbers. Prove that for any non-empty subset S ⊂ {1, 2, . . . , n}, the following
inequality holds: (∑

i∈S

ai

)2

≤
∑

1≤i≤j≤n

(ai + · · ·+ aj)2.
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Problem 3.85. (APMO, 2004) For any positive real numbers a, b, c, prove that

(a2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab + bc + ca).

Problem 3.86. (Short list IMO, 2004) Let a, b and c be positive real numbers such
that ab + bc + ca = 1. Prove that

3 3

√
1

abc
+ 6(a + b + c) ≤

3
√

3
abc

.

Problem 3.87. (IMO, 2004) Let n ≥ 3 be an integer. Let t1, t2, . . . , tn be positive
real numbers such that

n2 + 1 > (t1 + t2 + · · ·+ tn)
(

1
t1

+
1
t2

+ · · ·+ 1
tn

)
.

Prove that ti, tj , tk are the side-lengths of a triangle for all i, j, k with 1 ≤ i <
j < k ≤ n.

Problem 3.88. (Japan, 2005) Let a, b and c be positive real numbers such that
a + b + c = 1. Prove that

a
3
√

1 + b− c + b 3
√

1 + c− a + a
3
√

1 + a− b ≤ 1.

Problem 3.89. (Russia, 2005) Let x1, x2, . . . , x6 be real numbers such that x2
1 +

x2
2 + · · ·+ x2

6 = 6 and x1 + x2 + · · ·+ x6 = 0. Prove that x1x2 · · ·x6 ≤ 1
2 .

Problem 3.90. (United Kingdom, 2005) Let a, b, c be positive real numbers. Prove
that (

a

b
+

b

c
+

c

a

)2

≥ (a + b + c)
(

1
a

+
1
b

+
1
c

)
.

Problem 3.91. (APMO, 2005) Let a, b and c be positive real numbers such that
abc = 8. Prove that

a2√
(1 + a3)(1 + b3)

+
b2√

(1 + b3)(1 + c3)
+

c2√
(1 + c3)(1 + a3)

≥ 4
3
.

Problem 3.92. (IMO, 2005) Let x, y, z be positive real numbers such that xyz ≥ 1.
Prove that

x5 − x2

x5 + y2 + z2
+

y5 − y2

y5 + z2 + x2
+

z5 − z2

z5 + x2 + y2
≥ 0.

Problem 3.93. (Balkan, 2006) Let a, b, c be positive real numbers, prove that

1
a(b + 1)

+
1

b(c + 1)
+

1
c(a + 1)

≥ 3
1 + abc

.
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Problem 3.94. (Estonia, 2006) Let O be the circumcenter of the acute triangle
ABC and let A′, B′ and C′ be the circumcenter of the triangles BCO, CAO and
ABO, respectively. Prove that the area of the triangle ABC is less than or equal
to the area of the triangle A′B′C′.

Problem 3.95. (Lithuania, 2006) Let a, b, c be positive real numbers, prove that

1
a2 + bc

+
1

b2 + ca
+

1
c2 + ab

≤ 1
2

(
1
ab

+
1
bc

+
1
ca

)
.

Problem 3.96. (Turkey, 2006) Let a1, a2, . . . , an be positive real numbers such
that

a1 + a2 + · · ·+ an = a2
1 + a2

2 + · · ·+ a2
n = A.

Prove that ∑
i�=j

ai

aj
≥ (n− 1)2A

A− 1
.

Problem 3.97. (Iberoamerican, 2006) Consider n real numbers a1, a2, . . . , an,
not necessarily distinct. Let d be the difference between the maximum and the
minimum value of the numbers and let s =

∑
i<j |ai − aj |. Prove that

(n− 1)d ≤ s ≤ n2d

4
,

and determine the conditions on the n numbers that ensure the validity of the
equalities.

Problem 3.98. (IMO, 2006) Determine the least real number M such that the
inequality ∣∣ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)

∣∣ ≤ M(a2 + b2 + c2)2

is satisfied for all real numbers a, b, c.

Problem 3.99. (Bulgaria, 2007) Find all positive integers n such that if a, b, c are
non-negative real numbers with a + b + c = 3, then

abc(an + bn + cn) ≤ 3.

Problem 3.100. (Bulgaria, 2007) If a, b, c are positive real numbers, prove that

(a + 1)(b + 1)2

3 3
√

c2a2 + 1
+

(b + 1)(c + 1)2

3 3
√

a2b2 + 1
+

(c + 1)(a + 1)2

3 3
√

b2c2 + 1
≥ a + b + c + 3.

Problem 3.101. (China, 2007) If a, b, c are the lengths of the sides of a triangle
with a + b + c = 3, find the minimum of

a2 + b2 + c2 +
4abc

3
.
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Problem 3.102. (Greece, 2007) If a, b, c are the lengths of the sides of a triangle,
prove that

(a + b− c)4

b(b + c− a)
+

(b + c− a)4

c(c + a− b)
+

(c + a− b)4

a(a + b− c)
≥ ab + bc + ca.

Problem 3.103. (Iran, 2007) If a, b, c are three different positive real numbers,
prove that ∣∣∣∣a + b

a− b
+

b + c

b− c
+

c + a

c− a

∣∣∣∣ > 1.

Problem 3.104. (Mediterranean, 2007) Let x, y, z be real numbers such that
xy + yz + zx = 1. Prove that xz < 1

2 . Is it possible to improve the bound 1
2?

Problem 3.105. (Mediterranean, 2007) Let x > 1 be a real number which is not
an integer. Prove that(

x + {x}
[x]

− [x]
x + {x}

)
+

(
x + [x]
{x} − {x}

x + [x]

)
>

9
2
,

where [x] and {x} represent the integer part and the fractional part of x, respec-
tively.

Problem 3.106. (Peru, 2007) Let a, b, c be positive real numbers such that a+ b+
c ≥ 1

a + 1
b + 1

c . Prove that

a + b + c ≥ 3
a + b + c

+
2

abc
.

Problem 3.107. (Romania, 2007) Let a, b, c be positive real numbers such that

1
a + b + 1

+
1

b + c + 1
+

1
c + a + 1

≥ 1.

Prove that
a + b + c ≥ ab + bc + ca.

Problem 3.108. (Romania, 2007) Let ABC be an acute triangle with AB = AC.
For every interior point P of ABC, consider the circle with center A and radius
AP ; let M and N be the intersections of the sides AB and AC with the circle,
respectively. Determine the position of P in such a way that MN + BP + CP is
minimum.

Problem 3.109. (Romania, 2007) The points M , N , P on the sides BC, CA, AB,
respectively, are such that the triangle MNP is acute. Let x be the length of
the shortest altitude in the triangle ABC and let X be the length of the largest
altitude in the triangle MNP . Prove that x ≤ 2X .
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Problem 3.110. (APMO, 2007) Let x, y, z be positive real numbers such that√
x +

√
y +

√
z = 1. Prove that

x2 + yz√
2x2(y + z)

+
y2 + zx√
2y2(z + x)

+
z2 + xy√
2z2(x + y)

≥ 1.

Problem 3.111. (Baltic, 2008) If the positive real numbers a, b, c satisfy a2 + b2 +
c2 = 3, prove that

a2

2 + b + c2
+

b2

2 + c + a2
+

c2

2 + a + b2
≥ (a + b + c)2

12
.

Under which circumstances the equality holds?

Problem 3.112. (Canada, 2008) Let a, b, c be positive real numbers for which
a + b + c = 1. Prove that

a− bc

a + bc
+

b− ca

b + ca
+

c− ab

c + ab
≤ 3

2
.

Problem 3.113. (Iran, 2008) Find the least real number K such that for any
positive real numbers x, y, z, the following inequality holds:

x
√

y + y
√

z + z
√

x ≤ K
√

(x + y)(y + z)(z + x).

Problem 3.114. (Ireland, 2008) If the positive real numbers a, b, c, d satisfy a2 +
b2 + c2 + d2 = 1, prove that

a2b2cd + ab2c2d + abc2d2 + a2bcd2 + a2bc2d + ab2cd2 ≤ 3
32

.

Problem 3.115. (Ireland, 2008) Let x, y, z be positive real numbers such that
xyz ≥ 1. Prove that

(a) 27 ≤ (1 + x + y)2 + (1 + y + z)2 + (1 + z + x)2,

(b) (1 + x + y)2 + (1 + y + z)2 + (1 + z + x)2 ≤ 3(x + y + z)2.

The equalities hold if and only if x = y = z = 1.

Problem 3.116. (Romania, 2008) If a, b, c are positive real numbers with ab+ bc+
ca = 3, prove that

1
1 + a2(b + c)

+
1

1 + b2(c + a)
+

1
1 + c2(a + b)

≤ 1
abc

.

Problem 3.117. (Romania, 2008) Determine the maximum value for the real num-
ber k if

(a + b + c)
(

1
a + b

+
1

b + c
+

1
c + a

− k

)
≥ k

for all real numbers a, b, c ≥ 0 and with a + b + c = ab + bc + ca.
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Problem 3.118. (Serbia, 2008) Let a, b, c be positive real numbers such that
a + b + c = 1. Prove that

a2 + b2 + c2 + 3abc ≥ 4
9
.

Problem 3.119. (Vietnam, 2008) Let x, y, z be distinct non-negative real numbers.
Prove that

1
(x− y)2

+
1

(y − z)2
+

1
(z − x)2

≥ 4
xy + yz + zx

.

When is the case that the equality holds?

Problem 3.120. (IMO, 2008)

(i) If x, y, z are three real numbers different from 1 and such that xyz = 1,
prove that

x2

(x− 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
≥ 1.

(ii) Prove that the equality holds for an infinite number of x, y, z, all of them
being rational numbers.



Chapter 4

Solutions to Exercises and
Problems

In this chapter we present solutions or hints to the exercises and problems that
appear in this book. In Sections 1 and 2 we provide the solutions to the exercises
in Chapters 1 and 2, respectively, and in Section 3 the solutions to the problems in
Chapter 3. We recommend that the reader should consult this chapter only after
having tried to solve the exercises or the problems by himself.

4.1 Solutions to the exercises in Chapter 1

Solution 1.1. It follows from the definition of a < b and Property 1.1.1 for the
number a− b.

Solution 1.2. (i) If a < 0, then −a > 0. Also use (−a)(−b) = ab.
(ii) (−a)b > 0.
(iii) a < b⇔ b− a > 0, now use property 1.1.2.
(iv) Use property 1.1.2.
(v) If a < 0, then −a > 0.
(vi) a 1

a = 1 > 0.
(vii) If a < 0, then −a > 0.
(viii) Use (vi) and property 1.1.3.
(ix) Prove that ac < bc and that bc < bd.
(x) Use property 1.1.3 with a− 1 > 0 and a > 0.
(xi) Use property 1.1.3 with 1− a > 0 and a > 0.

Solution 1.3. (i) a2 < b2 ⇔ b2 − a2 = (b + a)(b− a) > 0.
(ii) If b > 0, then 1

b > 0, now use Example 1.1.4.

Solution 1.4. For (i), (ii) and (iii) use the definition, and for (iv) and (v) remember
that |a|2 = a2.
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Solution 1.5. (i) x ≤ |x| and −x ≤ |x| .
(ii) Consider |a| = |a− b + b| and |b| = |b− a + a|, and apply the triangle inequal-
ity.
(iii) (x2 + xy + y2)(x− y) = x3 − y3.
(iv) (x2 − xy + y2)(x + y) = x3 + y3.

Solution 1.6. If a, b or c is zero, the equality follows. Then, we can assume |a| ≥
|b| ≥ |c| > 0. Dividing by |a|, the inequality is equivalent to

1 +
∣∣∣∣ ba

∣∣∣∣ +
∣∣∣ c
a

∣∣∣− ∣∣∣∣1 +
b

a

∣∣∣∣−
∣∣∣∣ ba +

c

a

∣∣∣∣− ∣∣∣1 +
c

a

∣∣∣ +
∣∣∣∣1 +

b

a
+

c

a

∣∣∣∣ ≥ 0.

Since
∣∣ b
a

∣∣ ≤ 1 and
∣∣ c
a

∣∣ ≤ 1, we can deduce that
∣∣1 + b

a

∣∣ = 1+ b
a and

∣∣1 + c
a

∣∣ = 1+ c
a .

Thus, it is sufficient to prove that∣∣∣∣ ba
∣∣∣∣ +

∣∣∣ c
a

∣∣∣− ∣∣∣∣ ba +
c

a

∣∣∣∣−
(

1 +
b

a
+

c

a

)
+

∣∣∣∣1 +
b

a
+

c

a

∣∣∣∣ ≥ 0.

Now, use the triangle inequality and Exercise 1.5.

Solution 1.7. (i) Use that 0 ≤ b ≤ 1 and 1 + a > 0 in order to see that

0 ≤ b(1 + a) ≤ 1 + a ⇒ 0 ≤ b− a ≤ 1− ab ⇒ 0 ≤ b− a

1− ab
≤ 1.

(ii) The inequality on the left-hand side is clear. Since 1 + a ≤ 1 + b, it follows
that 1

1+b ≤ 1
1+a , and then prove that

a

1 + b
+

b

1 + a
≤ a

1 + a
+

b

1 + a
=

a + b

1 + a
≤ 1.

(iii) For the inequality on the left-hand side, use that ab2 − ba2 = ab(b− a) is the
product of non-negative real numbers. For the inequality on the right-hand side,
note that b ≤ 1 ⇒ b2 ≤ b⇒ −b ≤ −b2, and then

ab2 − ba2 ≤ ab2 − b2a2 = b2(a− a2) ≤ a− a2 =
1
4
− (

1
2
− a)2 ≤ 1

4
.

Solution 1.8. Prove in general that x <
√

2 ⇒ 1 + 1
1+x >

√
2 and that x >

√
2 ⇒

1 + 1
1+x <

√
2.

Solution 1.9. ax + by ≥ ay + bx⇔ (a− b)(x − y) ≥ 0.

Solution 1.10. We can assume that x ≥ y. Then, use the previous exercise substi-
tuting with

√
x2,

√
y2, 1√

y and 1√
x
.

Solution 1.11. Observe that

(a− b)(c− d) + (a− c)(b− d) + (d− a)(b− c) = 2(a− b)(c− d) = 2(a− b)2 ≥ 0.
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Solution 1.12. It follows from

f(a, c, b, d)− f(a, b, c, d) = (a− c)2 − (a− b)2 + (b− d)2 − (c− d)2

= (b− c)(2a− b− c) + (b− c)(b + c− 2d)
= 2(b− c)(a− d) > 0,

f(a, b, c, d)− f(a, b, d, c) = (b− c)2 − (b− d)2 + (d− a)2 − (c− a)2

= (d− c)(2b− c− d) + (d− c)(c + d− 2a)
= 2(d− c)(b− a) > 0.

Solution 1.13. In order for the expressions in the inequality to be well defined, it
is necessary that x ≥ − 1

2 and x �= 0. Multiply the numerator and the denominator
by (1 +

√
1 + 2x)2. Perform some simplifications and show that 2

√
2x + 1 < 7;

then solve for x.

Solution 1.14. Since 4n2 < 4n2 + n < 4n2 + 4n + 1, we can deduce that 2n <√
4n2 + n < 2n + 1. Hence, its integer part is 2n and then we have to prove that√
4n2 + n < 2n + 1

4 , this follows immediately after squaring both sides of the
inequality.

Solution 1.15. Since (a3 − b3)(a2 − b2) ≥ 0, we have that a5 + b5 ≥ a2b2(a + b),
then

ab

a5 + b5 + ab
≤ ab

a2b2(a + b) + ab
=

abc2

a2b2c2(a + b) + abc2
=

c

a + b + c
.

Similarly, bc
b5+c5+bc ≤ a

a+b+c and ca
c5+a5+ca ≤ b

a+b+c . Hence,

ab

a5 + b5 + ab
+

bc

b5 + c5 + bc
+

ca

c5 + a5 + ca
≤ c

a + b + c
+

a

a + b + c
+

b

a + b + c
,

but c
a+b+c + a

a+b+c + b
a+b+c = c+a+b

a+b+c = 1.

Solution 1.16. Consider p(x) = ax2 + bx+ c, using the hypothesis, p(1) = a+ b+ c
and p(−1) = a − b + c are not negative. Since a > 0, the minimum value of p is
attained at −b

2a and its value is 4ac−b2

4a < 0. If x1, x2 are the roots of p, we can
deduce that b

a = −(x1 + x2) and c
a = x1x2, therefore a+b+c

a = (1 − x1)(1 − x2),
a−b+c

a = (1 + x1)(1 + x2) and a−c
a = 1− x1x2. Observe that, (1− x1)(1− x2) ≥ 0,

(1 + x1)(1 + x2) ≥ 0 and 1− x1x2 ≥ 0 imply that −1 ≤ x1,x2 ≤ 1.

Solution 1.17. If the inequalities are true, then a, b and c are less than 1, and
a(1− b)b(1− c)c(1−a) > 1

64 . On the other hand, since x(1−x) ≤ 1
4 for 0 ≤ x ≤ 1,

then a(1− b)b(1− c)c(1− a) ≤ 1
64 .

Solution 1.18. Use the AM-GM inequality with a = 1, b = x.
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Solution 1.19. Use the AM-GM inequality with a = x, b = 1
x .

Solution 1.20. Use the AM-GM inequality with a = x2, b = y2.

Solution 1.21. In the previous exercise add x2 + y2 to both sides.

Solution 1.22. Use the AM-GM inequality with a = x+y
x , b = x+y

y and also use
the AM-GM inequality for x and y. Or reduce this to Exercise 1.20.

Solution 1.23. Use the AM-GM inequality with ax and b
x .

Solution 1.24. Use the AM-GM inequality with a
b and b

a .

Solution 1.25. a+b
2 −√ab = (√a−√b)2

2 , simplify and find the bounds using 0 < b ≤
a.

Solution 1.26. x + y ≥ 2
√

xy.

Solution 1.27. x2 + y2 ≥ 2xy.

Solution 1.28. xy + zx ≥ 2x
√

yz.

Solution 1.29. See Exercise 1.27.

Solution 1.30. 1
x + 1

y ≥ 2√
xy .

Solution 1.31. xy
z + yz

x ≥ 2
√

xy2z
zx = 2y.

Solution 1.32. x2+(y2+z2)
2 ≥ x

√
y2 + z2.

Solution 1.33. x4 + y4 + 8 = x4 + y4 + 4 + 4 ≥ 4 4
√

x4y416 = 8xy.

Solution 1.34. (a + b + c + d) ≥ 4 4
√

abcd,
(

1
a + 1

b + 1
c + 1

d

) ≥ 4 4

√
1

abcd .

Solution 1.35. a
b + b

c + c
d + d

a ≥ 4 4

√
a
b

b
c

c
d

d
a = 4.

Solution 1.36. (x1 + · · ·+ xn) ≥ n n
√

x1 · · ·xn,
(

1
x1

+ · · ·+ 1
xn

)
≥ n n

√
1

x1···xn
.

Solution 1.37. a1
b1

+ a2
b2

+ · · ·+ an

bn
≥ n n

√
a1···an

b1···bn
= n.

Solution 1.38. an−1 > n
(
a

n+1
2 − a

n−1
2

)
⇔ (a− 1)

(
an−1 + · · ·+ 1

)
> na

n−1
2 (a−

1)⇔ an−1+···+a+1
n > a

n−1
2 , but 1+a+···+an−1

n >
n
√

a
(n−1)n

2 = a
n−1

2 .

Solution 1.39. 1 =
(

1+a
2

) (
1+b
2

) (
1+c
2

) ≥ √a
√

b
√

c =
√

abc.

Solution 1.40. Using the AM-GM inequality, we obtain

a3

b
+

b3

c
+ bc ≥ 3 3

√
a3

b
· b3

c
· bc = 3ab.
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Similarly, b3

c + c3

a + ca ≥ 3bc and c3

a + a3

b + ab ≥ 3ca. Therefore, 2(a3

b + b3

c + c3

a ) +
(ab + bc + ca) ≥ 3(ab + bc + ca).

Second solution. The inequality can also be proved using Exercise 1.107.

Solution 1.41. If abc = 0, the result is clear. If abc > 0, then we have

ab

c
+

bc

a
+

ca

b
=

1
2

(
a

(
b

c
+

c

b

)
+ b

( c

a
+

a

c

)
+ c

(
a

b
+

b

a

))

≥ 1
2
(2a + 2b + 2c),

and the result is evident.

Solution 1.42. Apply the AM-GM inequality twice over, a2b + b2c + c2a ≥ 3abc,
ab2 + bc2 + ca2 ≥ 3abc.

Solution 1.43. 1+ab
1+a = abc+ab

1+a = ab
(

1+c
1+a

)
,

1 + ab

1 + a
+

1 + bc

1 + b
+

1 + ca

1 + c
= ab

(
1 + c

1 + a

)
+ bc

(
1 + a

1 + b

)
+ ca

(
1 + b

1 + c

)

≥ 3 3
√

(abc)2 = 3.

Solution 1.44.
(

1
a+b + 1

b+c + 1
c+a

)
(a + b + c) ≥ 9

2 is equivalent to

(
1

a + b
+

1
b + c

+
1

c + a

)
(a + b + b + c + c + a) ≥ 9,

which follows from Exercise 1.36. For the other inequality use 1
a + 1

b ≥ 4
a+b . See

Exercise 1.22.

Solution 1.45. Note that

n + Hn

n
=

(1 + 1) + (1 + 1
2 ) + · · ·+ (1 + 1

n )
n

.

Now, apply the AM-GM inequality.

Solution 1.46. Setting yi = 1
1+xi

, then xi = 1
yi
−1 = 1−yi

yi
. Observe that y1 + · · ·+

yn = 1 implies that 1− yi =
∑

j �=i yi, then
∑

j �=i yi ≥ (n− 1)
(∏

j �=i yj

) 1
n−1

and

∏
i

xi =
∏

i

(
1− yi

yi

)
=

∏
i

(∑
j �=i yj

)
∏
i

yi
≥

(n− 1)n
∏
i

(∏
j �=i yj

) 1
n−1

∏
i

yi
= (n− 1)n.
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Solution 1.47. Define an+1 = 1− (a1 + · · ·+an) and xi = 1−ai

ai
for i = 1, . . . , n+1.

Apply Exercise 1.46 directly.

Solution 1.48.
∑n

i=1
1

1+ai
= 1 ⇒∑n

i=1
ai

1+ai
= n− 1. Observe that

n∑
i=1

√
ai − (n− 1)

n∑
i=1

1√
ai

=
n∑

i=1

1
1 + ai

n∑
i=1

√
ai −

n∑
i=1

ai

1 + ai

n∑
i=1

1√
ai

=
∑
i,j

ai − aj

(1 + aj)
√

ai
=

∑
i>j

(
√

ai
√

aj − 1)(
√

ai −√aj)2(
√

ai +√aj)
(1 + ai)(1 + aj)

√
ai
√

aj
.

Since 1 ≥ 1
1+ai

+ 1
1+aj

= 2+ai+aj

1+ai+aj+aiaj
, we can deduce that aiaj ≥ 1. Hence the

terms of the last sum are positive.

Solution 1.49. Let Sa =
∑n

i=1
a2

i

ai+bi
and Sb =

∑n
i=1

b2i
ai+bi

. Then

Sa − Sb =
n∑

i=1

a2
i − b2

i

ai + bi
=

n∑
i=1

ai −
n∑

i=1

bi = 0,

thus Sa = Sb = S. Hence, we have

2S =
n∑

i=1

a2
i + b2

i

ai + bi
≥ 1

2

n∑
i=1

(ai + bi)2

ai + bi
=

n∑
i=1

ai,

where the inequality follows after using Exercise 1.21.

Solution 1.50. Since the inequality is homogeneous16 we can assume that abc = 1.
Setting x = a3, y = b3 and z = c3, the inequality is equivalent to

1
x + y + 1

+
1

y + z + 1
+

1
z + x + 1

≤ 1.

Let A = x + y + 1, B = y + z + 1 and C = z + x + 1, then

1
A

+
1
B

+
1
C
≤ 1⇔ (A− 1)(B − 1)(C − 1)− (A + B + C) + 1 ≥ 0

⇔ (x + y)(y + z)(z + x)− 2(x + y + z) ≥ 2

⇔ (x + y + z)(xy + yz + zx− 2) ≥ 3.

Now, use that

x + y + z

3
≥ (xzy)

1
3 and

xy + yz + zx

3
≥ (xyz)

2
3 .

16A function f(a, b, . . .) is homogeneous if f(ta, tb, . . .) = tf(a, b, . . .) for each t ∈ R. Then, an
inequality of the form f(a, b, . . .) ≥ 0, in the case of a homogeneous function, is equivalent to
f(ta, tb, . . .) ≥ 0 for any t > 0.
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Second solution. Follow the ideas used in the solution of Exercise 1.15. Start with
the inequality (a2− b2)(a− b) ≥ 0 to guarantee that a3 + b3 + abc ≥ ab(a + b + c),
then

1
a3 + b3 + abc

≤ c

abc(a + b + c)
.

Solution 1.51. Note that abc ≤ (
a+b+c

3

)3
= 1

27 .(
1
a

+ 1
)(

1
b

+ 1
)(

1
c

+ 1
)

= 1 +
1
a

+
1
b

+
1
c

+
1
ab

+
1
bc

+
1
ca

+
1

abc

≥ 1 +
3

3
√

abc
+

3
3
√

(abc)2
+

1
abc

=
(

1 +
1

3
√

abc

)3

≥ 43.

Solution 1.52. The inequality is equivalent to
(

b+c
a

) (
a+c

b

) (
a+b

c

) ≥ 8. Now, we use
the AM-GM inequality for each term of the product and the inequality follows
immediately.

Solution 1.53. Notice that

a

(a + 1)(b + 1)
+

b

(b + 1)(c + 1)
+

c

(c + 1)(a + 1)

=
(a + 1)(b + 1)(c + 1)− 2

(a + 1)(b + 1)(c + 1)
= 1− 2

(a + 1)(b + 1)(c + 1)
≥ 3

4

if and only if (a+1)(b+1)(c+1) ≥ 8, and this last inequality follows immediately
from the inequality

(
a+1
2

) (
b+1
2

) (
c+1
2

) ≥ √a
√

b
√

c = 1.

Solution 1.54. Observe that this exercise is similar to Exercise 1.52.

Solution 1.55. Apply the inequality between the arithmetic mean and the harmonic
mean to get

2ab

a + b
=

2
1
a + 1

b

≤ a + b

2
.

We can conclude that equality holds when a = b = c.

Solution 1.56. First use the fact that (a + b)2 ≥ 4ab, and then take into account
that

n∑
i=1

1
aibi

≥ 4
n∑

i=1

1
(ai + bi)

2 .

Now, use Exercise 1.36 to prove that
n∑

i=1

(ai + bi)
2

n∑
i=1

1
(ai + bi)

2 ≥ n2.
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Solution 1.57. Using the AM-GM inequality leads to xy + yz ≥ 2y
√

xz. Adding
similar results we get 2(xy + yz + zx) ≥ 2(x

√
yz + y

√
zx + z

√
xy). Once again,

using AM-GM inequality, we get x2 +x2+y2+z2 ≥ 4x
√

yz. Adding similar results
once more, we obtain x2 + y2 + z2 ≥ x

√
yz + y

√
zx + z

√
xy. Now adding both

results, we reach the conclusion (x+y+z)2

3 ≥ x
√

yz + y
√

zx + z
√

xy.

Solution 1.58. Using the AM-GM inequality takes us to x4+y4 ≥ 2x2y2. Applying
AM-GM inequality once again shows that 2x2y2 + z2 ≥ √8xyz. Or, directly we
have that

x4 + y4 +
z2

2
+

z2

2
≥ 4 4

√
x4y4z4

4
=
√

8xyz.

Solution 1.59. Use the AM-GM inequality to obtain

x2

y − 1
+

y2

x− 1
≥ 2

xy√
(x− 1)(y − 1)

≥ 8.

The last inequality follows from x√
x−1

≥ 2, since (x− 2)2 ≥ 0.

Second solution. Let a = x − 1 and b = y − 1, which are positive numbers,
then the inequality we need to prove is equivalent to (a+1)2

b + (b+1)2

a ≥ 8. Now,
by the AM-GM inequality we have (a + 1)2 ≥ 4a and (b + 1)2 ≥ 4b. Then,
(a+1)2

b + (b+1)2

a ≥ 4
(

a
b + b

a

) ≥ 8. The last inequality follows from Exercise 1.24.

Solution 1.60. Observe that (a, b, c) and (a2, b2, c2) have the same order, then use
inequality (1.2).

Solution 1.61. By the previous exercise

a3 + b3 + c3 ≥ a2b + b2c + c2a.

Observe that ( 1
a , 1

b , 1
c ) and ( 1

a2 , 1
b2 , 1

c2 ) can be ordered in the same way. Then, use
inequality (1.2) to get

(ab)3 + (bc)3 + (ca)3 =
1
a3

+
1
b3

+
1
c3

≥ 1
a2

1
c

+
1
b2

1
a

+
1
c2

1
b

=
b

a
+

c

b
+

a

c

= a2b + b2c + c2a.

Adding these two inequalities leads to the result.

Solution 1.62. Use inequality (1.2) with (a1, a2, a3) = (b1, b2, b3) =
(

a
b , b

c ,
c
a

)
and

(a′1, a
′
2, a

′
3) =

(
b
c , c

a , a
b

)
.
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Solution 1.63. Use inequality (1.2) with (a1, a2, a3) = (b1, b2, b3) =
(

1
a , 1

b , 1
c

)
and

(a′1, a
′
2, a

′
3) =

(
1
b , 1

c , 1
a

)
.

Solution 1.64. Assume that a ≤ b ≤ c, and consider (a1, a2, a3) = (a, b, c), then
use the rearrangement inequality (1.2) twice over with (a′1, a

′
2, a

′
3) = (b, c, a) and

(c, a, b), respectively. Note that we are also using

(b1, b2, b3) =
(

1
b + c− a

,
1

c + a− b
,

1
a + b− c

)
.

Solution 1.65. Use the same idea as in the previous exercise, but with n variables.

Solution 1.66. Turn to the previous exercise and the fact that s
s−a1

= 1 + a1
s−a1

.

Solution 1.67. Apply Exercise 1.65 to the sequence a1, . . . , an, a1, . . . , an.

Solution 1.68. Apply Example 1.4.11.

Solution 1.69. Note that 1 = (a2 + b2 + c2)+ 2(ab + bc + ca), and use the previous
exercise as follows:

1
3

=
a + b + c

3
≤

√
a2 + b2 + c2

3
.

Therefore 1
3 ≤ a2 + b2 + c2. Hence, 2(ab + bc + ca) ≤ 2

3 , and the result is evident.

Second solution. The inequality is equivalent to 3(ab + bc + ca) ≤ (a + b + c)2,
which can be simplified to ab + bc + ca ≤ a2 + b2 + c2.

Solution 1.70. Let G = n
√

x1x2 · · ·xn be the geometric mean of the given numbers
and (a1, a2, . . . , an) =

(
x1
G , x1x2

G2 , . . . , x1x2···xn

Gn

)
.

Using Corollary 1.4.2, we can establish that

n ≤ a1

a2
+

a2

a3
+ · · ·+ an−1

an
+

an

a1
=

G

x2
+

G

x3
+ · · ·+ G

xn
+

G

x1
,

thus
n

1
x1

+ · · ·+ 1
xn

≤ G.

Also, using Corollary 1.4.2,

n ≤ a1

an
+

a2

a1
+ · · ·+ an

an−1
=

x1

G
+

x2

G
+ · · ·+ xn

G
,

then
G ≤ x1 + x2 + · · ·+ xn

n
.

The equalities hold if and only if a1 = a2 = · · · = an, that is, if and only if
x1 = x2 = · · · = xn.
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Solution 1.71. The inequality is equivalent to

an−1
1 + an−1

2 + · · ·+ an−1
n ≥ a1 · · · an

a1
+

a1 · · · an

a2
+ · · ·+ a1 · · ·an

an
,

which can be verified using the rearrangement inequality several times over.

Solution 1.72. First note that
∑n

i=1
ai√
1−ai

=
∑n

i=1
1√

1−ai
−∑n

i=1

√
1− ai. Use

the AM-GM inequality to obtain

1
n

n∑
i=1

1√
1− ai

≥ n

√√√√ n∏
i=1

1√
1− ai

=

√
1

n
√∏n

i=1(1− ai)

≥
√

1
1
n

∑n
i=1(1 − ai)

=
√

n

n− 1
.

Moreover,the Cauchy-Schwarz inequality serves to show that

n∑
i=1

√
1− ai ≤

√√√√ n∑
i=1

(1− ai)
√

n =
√

n(n− 1) and
n∑

i=1

√
ai ≤

√
n.

Solution 1.73. (i)
√

4a + 1 < 4a+1+1
2 = 2a + 1.

(ii) Use the Cauchy-Schwarz inequality with u = (
√

4a + 1,
√

4b + 1,
√

4c + 1) and
v = (1, 1, 1).

Solution 1.74. Suppose that a ≥ b ≥ c ≥ d (the other cases are similar). Then, if
A = b + c + d, B = a + c + d, C = a + b + d and D = a + b + c, we can deduce
that 1

A ≥ 1
B ≥ 1

C ≥ 1
D . Apply the Tchebyshev inequality twice over to show that

a3

A
+

b3

B
+

c3

C
+

d3

D
≥ 1

4
(a3 + b3 + c3 + d3)

(
1
A

+
1
B

+
1
C

+
1
D

)

≥ 1
16

(a2 + b2 + c2 + d2)(a + b + c + d)
(

1
A

+
1
B

+
1
C

+
1
D

)

=
1
16

(a2 + b2 + c2 + d2)
(

A + B + C + D

3

)(
1
A

+
1
B

+
1
C

+
1
D

)
.

Now, use the Cauchy-Schwarz inequality to derive the result

a2 + b2 + c2 + d2 ≥ ab + bc + cd + da = 1

and the inequality (A + B + C + D)( 1
A + 1

B + 1
C + 1

D ) ≥ 16.

Solution 1.75. Apply the rearrangement inequality to

(a1, a2, a3) =

(
3

√
a

b
,

3

√
b

c
, 3

√
c

a

)
, (b1, b2, b3) =

⎛
⎝ 3

√(a

b

)2

,
3

√(
b

c

)2

,
3

√( c

a

)2

⎞
⎠
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and the permutation (a′1, a
′
2, a

′
3) =

(
3

√
b
c , 3

√
c
a , 3

√
a
b

)
to derive

a

b
+

b

c
+

c

a
≥ 3

√
a2

bc
+ 3

√
b2

ca
+ 3

√
c2

ab
.

Finally, use the fact that abc = 1.

Second solution. The AM-GM inequality and the fact that abc = 1 imply that

1
3

(
a

b
+

a

b
+

b

c

)
≥ 3

√
a

b

a

b

b

c
= 3

√
a2

bc
= 3

√
a3

abc
= a.

Similarly,
1
3

(
b

c
+

b

c
+

c

a

)
≥ b and

1
3

( c

a
+

c

a
+

a

b

)
≥ c,

and the result follows.

Solution 1.76. Using the hypothesis, for all k, leads to s − 2xk > 0. Turn to the
Cauchy-Schwarz inequality to show that(

n∑
k=1

x2
k

s− 2xk

)(
n∑

k=1

(s− 2xk)

)
≥

(
n∑

k=1

xk

)2

= s2.

But 0 <
∑n

k=1(s− 2xk) = ns− 2s, therefore

n∑
k=1

x2
k

s− 2xk
≥ s

n− 2
.

Solution 1.77. The function f(x) =
(
x + 1

x

)2 is convex in R+.

Solution 1.78. The function

f(a, b, c) =
a

b + c + 1
+

b

a + c + 1
+

c

a + b + 1
+ (1 − a)(1− b)(1− c)

is convex in each variable, therefore its maximum is attained at the endpoints.

Solution 1.79. If x = 0, then the inequality reduces to 1 + 1√
1+y2

≤ 2, which is

true because y ≥ 0. By symmetry, the inequality holds for y = 0.
Now, suppose that 0 < x ≤ 1 and 0 < y ≤ 1. Let u ≥ 0 and v ≥ 0 such that

x = e−u and y = e−v, then the inequality becomes

1√
1 + e−2u

+
1√

1 + e−2v
≤ 2√

1 + e−(u+v)
,
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that is,
f(u) + f(v)

2
≤ f

(
u + v

2

)
,

where f(x) = 1√
1+e−2x

. Since f ′′(x) = 1−2e2x

(1+e−2x)5/2e4x
, the function is concave in

the interval [0,∞). Thus the previous inequality holds.

Solution 1.80. Find f ′′(x).

Solution 1.81. Use log(sin x) or the fact that

sin A sin B = sin
(

A + B

2
+

A−B

2

)
sin

(
A + B

2
− A−B

2

)
.

Solution 1.82. (i) If 1+nx ≤ 0, the inequality is evident since (1+x)n ≥ 0. Suppose
that (1 + nx) > 0. Apply AM-GM inequality to the numbers (1, 1, . . . , 1, 1 + nx)
with (n− 1) ones.
(ii) Let a1,. . ., an be positive numbers and define, for each j = 1, . . . n, σj =
a1+···+aj

j . Apply Bernoulli’s inequality to show that
(

σj

σj−1

)j

≥ j
σj

σj−1
− (j − 1),

which implies

σj
j ≥ σj

j−1

(
j

σj

σj−1
− (j − 1)

)
= σj−1

j−1(jσj − (j − 1)σj−1) = ajσ
j−1
j−1 .

Then, σn
n ≥ anσn−1

n−1 ≥ anan−1σ
n−2
n−2 ≥ · · · ≥ anan−1 · · · a1.

Solution 1.83. If x ≥ y ≥ z, we have xn(x − y)(x − z) ≥ yn(x − y)(y − z) and
zn(z − x)(z − y) ≥ 0.

Solution 1.84. Notice that x(x−z)2 +y(y−z)2−(x−z)(y−z)(x+y−z) ≥ 0 if and
only if x(x− z)(x− y)+ y(y− z)(y−x) + z(x− z)(y− z) ≥ 0. The inequality now
follows from Schür’s inequality. Alternatively, we can see that the last expression
is symmetric in x, y and z, then we can assume x ≥ z ≥ y, and if we return to the
original inequality, it becomes clear that

x(x − z)2 + y(y − z)2 ≥ 0 ≥ (x− z)(y − z)(x + y − z).

Solution 1.85. The inequality is homogeneous, therefore we can assume that a +
b + c = 1. Now, the terms on the left-hand side are of the form x

(1−x)2 and the
function f(x) = x

(1−x)2 is convex, since f ′′(x) = 4+2x
(1−x)4 > 0. By Jensen’s inequality

it follows that a
(1−a)2 + b

(1−b)2 + c
(1−c)2 ≥ 3f

(
a+b+c

3

)
= 3f

(
1
3

)
=

(
3
2

)2.

Solution 1.86. Since (a+b+c)2 ≥ 3(ab+bc+ca), we can deduce that 1+ 3
ab+bc+ca ≥

1 + 9
(a+b+c)2 . Thus, the inequality will hold if

1 +
9

(a + b + c)2
≥ 6

(a + b + c)
.
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But this last inequality follows from
(
1− 3

a+b+c

)2

≥ 0.

Now, if abc = 1, consider x = 1
a , y = 1

b and z = 1
c ; it follows immediately

that xyz = 1. Thus, the inequality is equivalent to

1 +
3

xy + yz + zx
≥ 6

x + y + z

which is the first part of this exercise.

Solution 1.87. We will use the convexity of the function f(x) = xr for r ≥ 1 (its
second derivative is r(r − 1)xr−2). First suppose that r > s > 0. Then Jensen’s
inequality for the convex function f(x) = x

r
s applied to xs

1, . . . , xs
n gives

t1x
r
1 + · · ·+ tnxr

n ≥ (t1xs
1 + · · ·+ tnxs

n)
r
s

and taking the 1
r -th power of both sides gives the desired inequality.

Now suppose 0 > r > s. Then f(x) = x
r
s is concave, so Jensen’s inequality

is reversed; however, taking 1
r -th powers reverses the inequality again.

Finally, in the case r > 0 > s, f(x) = x
r
s is again convex, and taking 1

r -th
powers preserves the inequality.

Solution 1.88. (i) Apply Hölder’s inequality to the numbers xc
1, . . . , xc

n, yc
1, . . . ,

yc
n with a′ = a

c and b′ = b
c .

(ii) Proceed as in Example 1.5.9. The only extra fact that we need to prove is
xiyizi ≤ 1

axa
i + 1

b yb
i + 1

czc
i , but this follows from part (i) of that example.

Solution 1.89. By the symmetry of the variables in the inequality we can assume
that a ≤ b ≤ c. We have two cases, (i) b ≤ a+b+c

3 and (ii) b ≥ a+b+c
3 .

Case (i): b ≤ a+b+c
3 .

It happens that a+b+c
3 ≤ a+c

2 ≤ c, and it is true that a+b+c
3 ≤ b+c

2 ≤ c. Then,
there exist λ, μ ∈ [0, 1] such that

c + a

2
= λc + (1− λ)

(
a + b + c

3

)
and

b + c

2
= μc + (1− μ)

(
a + b + c

3

)
.

Adding these equalities, we obtain

a + b + 2c

2
= (λ +μ)c + (2−λ−μ)

(
a + b + c

3

)
= (2−λ−μ)

(
a + b− 2c

3

)
+2c.

Hence,
a + b− 2c

2
= (2 − λ− μ)

(
a + b− 2c

3

)
,

therefore 2− (λ + μ) = 3
2 and (λ + μ) = 1

2 .
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Now, since f is a convex function, we have

f

(
a + b

2

)
≤ 1

2
(f(a) + f(b))

f

(
b + c

2

)
≤ μf(c) + (1− μ)f

(
a + b + c

3

)

f

(
c + a

2

)
≤ λf(c) + (1− λ)f

(
a + b + c

3

)
thus, adding these inequalities we get

f

(
a + b

2

)
+ f

(
b + c

2

)
+ f

(
c + a

2

)
≤ 1

2
(f(a) + f(b) + f(c))

+
3
2
f

(
a + b + c

3

)
.

Case (ii): b ≥ a+b+c
3 .

It is similar to case (i), using the fact that a ≤ a+c
2 ≤ a+b+c

3 and a ≤ a+b
2 ≤ a+b+c

3 .

Solution 1.90. If any of a, b or c is zero, the inequality is evident. Applying Popovi-
ciu’s inequality (see the previous exercise) to the function f : R → R

+ defined by
f(x) = exp(2x), which is convex since f ′′(x) = 4 exp(2x) > 0, we obtain

exp(2x) + exp(2y) + exp(2z) + 3 exp
(

2(x + y + z)
3

)
≥ 2 [exp(x + y) + exp(y + z) + exp(z + x)]
= 2 [exp(x) exp(y) + exp(y) exp(z) + exp(z) exp(x)] .

Setting a = exp(x), b = exp(y), c = exp(z), the previous inequality can be rewrit-
ten as

a2 + b2 + c2 + 3 3
√

a2b2c2 ≥ 2(ab + bc + ca).

For the second part apply the AM-GM inequality in the following way:

2abc + 1 = abc + abc + 1 ≥ 3 3
√

a2b2c2.

Solution 1.91. Apply Popoviciu’s inequality to the convex function f(x) = x + 1
x .

We will get the inequality 1
a + 1

b + 1
c + 9

a+b+c ≥ 4
b+c + 4

c+a + 4
a+b . Then multiply

both sides by (a + b + c) to finish the proof.

Solution 1.92. Observe that by using (1.8), we obtain

x2 + y2 + z2 − |x||y| − |y||z| − |z||x| = 1
2
(|x| − |y|)2 +

1
2
(|y| − |z|)2 +

1
2
(|z| − |x|)2,

which is clearly greater than or equal to zero. Hence

|xy + yz + zx| ≤ |x||y|+ |y||z|+ |z||x| ≤ x2 + y2 + z2.

Second solution. Apply Cauchy-Schwarz inequality to (x, y, z) and (y, z, x).



4.1 Solutions to the exercises in Chapter 1 131

Solution 1.93. The inequality is equivalent to ab + bc + ca ≤ a2 + b2 + c2, which
we know is true. See Exercise 1.27.

Solution 1.94. Observe that if a + b + c = 0, then it follows from (1.7) that
a3 + b3 + c3 = 3abc. Since (x − y) + (y − z) + (z − x) = 0, we can derive the
following factorization:

(x− y)3 + (y − z)3 + (z − x)3 = 3(x− y)(y − z)(z − x).

Solution 1.95. Assume, without loss of generality, that a ≥ b ≥ c. We need to
prove that

−a3 + b3 + c3 + 3abc ≥ 0.

Since
−a3 + b3 + c3 + 3abc = (−a)3 + b3 + c3 − 3(−a)bc,

the latter expression factors into
1
2
(−a + b + c)((a + b)2 + (a + c)2 + (b− c)2).

The conclusion now follows from the triangle inequality, b + c > a.

Solution 1.96. Let p = |(x − y)(y − z)(z − x)|. Using AM-GM inequality on the
right-hand side of identity (1.8), we get

x2 + y2 + z2 − xy − yz − zx ≥ 3
2

3
√

p2. (4.1)

Now, since |x− y| ≤ x + y, |y − z| ≤ y + z, |z − x| ≤ z + x, it follows that

2(x + y + z) ≥ |x− y|+ |y − z|+ |z − x|. (4.2)

Applying again the AM-GM inequality leads to

2(x + y + z) ≥ 3 3
√

p,

and the result follows from inequalities (4.1) and (4.2).

Solution 1.97. Using identity (1.7), the condition x3 + y3 + z3 − 3xyz = 1 can be
factorized as

(x + y + z)(x2 + y2 + z2 − xy − yz − zx) = 1. (4.3)

Let A = x2 + y2 + z2 and B = x + y + z. Notice that B2 −A = 2(xy + yz + zx).
By identity (1.8), we have that B > 0. Equation (4.3) now becomes

B

(
A− B2 −A

2

)
= 1,

therefore 3A = B2 + 2
B . Since B > 0, we may apply the AM-GM inequality to

obtain
3A = B2 +

2
B

= B2 +
1
B

+
1
B
≥ 3,

that is, A ≥ 1. For instance, the minimum A = 1 is attained when (x, y, z) =
(1, 0, 0).
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Solution 1.98. Inequality (1.11) helps to establish

1
a

+
1
b

+
4
c

+
16
d
≥ (1 + 1 + 2 + 4)2

a + b + c + d
=

64
a + b + c + d

.

Solution 1.99. Apply inequality (1.11) twice over to get

a4 + b4 =
a4

1
+

b4

1
≥ (a2 + b2)2

2
≥ ( (a+b)2

2 )2

2
=

(a + b)4

8
.

Solution 1.100. Express the left-hand side as

(
√

2)2

x + y
+

(
√

2)2

y + z
+

(
√

2)2

z + x

and use inequality (1.11).

Solution 1.101. Express the left-hand side as

x2

axy + bzx
+

y2

ayz + bxy
+

z2

azx + byz
,

and then use inequality (1.11) to get

x2

axy + bzx
+

y2

ayz + bxy
+

z2

azx + byz
≥ (x + y + z)2

(a + b)(xy + yz + zx)
≥ 3

a + b
,

where the last inequality follows from (1.8).

Solution 1.102. Rewrite the left-hand side as

a2

a + b
+

b2

b + c
+

c2

a + c
+

b2

a + b
+

c2

b + c
+

a2

a + c
,

and then apply inequality (1.11).

Solution 1.103. (i) Express the left-hand side as

x2

x2 + 2xy + 3zx
+

y2

y2 + 2yz + 3xy
+

z2

z2 + 2zx + 3yz

and apply inequality (1.11) to get

x

x + 2y + 3z
+

y

y + 2z + 3x
+

z

z + 2x + 3y
≥ (x + y + z)2

x2 + y2 + z2 + 5(xy + yz + zx)
.

Now it suffices to prove that

(x + y + z)2

x2 + y2 + z2 + 5(xy + yz + zx)
≥ 1

2
,
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but this is equivalent to x2 + y2 + z2 ≥ xy + yz + zx.
(ii) Proceed as in part (i), expressing the left-hand side as

w2

xw + 2yw + 3zw
+

x2

xy + 2xz + 3xw
+

y2

yz + 2yw + 3xy
+

z2

zw + 2xz + 3yz
,

then use inequality (1.11) to get

w

x + 2y + 3z
+

x

y + 2z + 3w
+

y

z + 2w + 3x
+

z

w + 2x + 3y

≥ (w + x + y + z)2

4(wx + xy + yz + zw + wy + xz)
.

Then, the inequality we have to prove becomes

(w + x + y + z)2

4(wx + xy + yz + zw + wy + xz)
≥ 2

3
,

which is equivalent to 3(w2 +x2 +y2 +z2) ≥ 2(wx+xy +yz+zw+wy +xz). This
follows by using the AM-GM inequality six times under the form x2 + y2 ≥ 2xy.

Solution 1.104. We again apply inequality (1.11) to get

x2

(x + y)(x + z)
+

y2

(y + z)(y + x)
+

z2

(z + x)(z + y)

≥ (x + y + z)2

x2 + y2 + z2 + 3(xy + yz + zx)
.

Also, the inequality

(x + y + z)2

x2 + y2 + z2 + 3(xy + yz + zx)
≥ 3

4

is equivalent to
x2 + y2 + z2 ≥ xy + yz + zx.

Solution 1.105. We express the left-hand side as

a2

a(b + c)
+

b2

b(c + d)
+

c2

c(d + a)
+

d2

d(a + b)

and apply inequality (1.11) to get

a2

a(b + c)
+

b2

b(c + d)
+

c2

c(d + a)
+

d2

d(a + b)
≥ (a + b + c + d)2

a(b + 2c + d) + b(c + d) + d(b + c)
.
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On the other hand, observe that

(a + b + c + d)2

(ac + bd) + (ab + ac + ad + bc + bd + cd)

=
a2 + b2 + c2 + d2 + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd

(ac + bd) + (ab + ac + ad + bc + bd + cd)
.

To prove that this last expression is greater than 2 is equivalent to showing that
a2 + c2 ≥ 2ac and b2 + d2 ≥ 2bd, which can be done using the AM-GM inequality.

Solution 1.106. We express the left-hand side as

a2

ab + ac
+

b2

bc + bd
+

c2

cd + ce
+

d2

de + ad
+

e2

ae + be

and apply inequality (1.11) to get

a2

ab + ac
+

b2

bc + bd
+

c2

cd + ce
+

d2

de + ad
+

e2

ae + be
≥ (a + b + c + d + e)2∑

ab
.

Since
(a + b + c + d + e)2 =

∑
a2 + 2

∑
ab,

we have to prove that

2
∑

a2 + 4
∑

ab ≥ 5
∑

ab,

which is equivalent to
2
∑

a2 ≥
∑

ab.

The last inequality follows from
∑

a2 ≥∑
ab.

Solution 1.107. (i) Using Tchebyshev’s inequality with the collections (a ≥ b ≥ c)
and (a2

x ≥ b2

y ≥ c2

z ), we obtain

1
3

(
a3

x
+

b3

y
+

c3

z

)
≥

a2

x + b2

y + c2

z

3
· a + b + c

3
,

then by (1.11), we can deduce that

a2

x
+

b2

y
+

c2

z
≥ (a + b + c)2

x + y + z
.

Therefore
a3

x
+

b3

y
+

c3

z
≥ (a + b + c)2

x + y + z
· a + b + c

3
.
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(ii) By Exercise 1.88, we have(
a3

x
+

b3

y
+

c3

z

) 1
3

(1 + 1 + 1)
1
3 (x + y + z)

1
3 ≥ a + b + c.

Raising to the cubic power both sides and then dividing both sides by 3(x+ y+ z)
we obtain the result.

Solution 1.108. Using inequality (1.11), we obtain

x2
1 + x2

2 + · · ·+ x2
n

x1 + x2 + · · ·+ xn

=
x2

1

x1 + x2 + · · ·+ xn
+

x2
2

x1 + x2 + · · ·+ xn
+ · · ·+ x2

n

x1 + x2 + · · ·+ xn

≥ (x1 + x2 + · · ·+ xn)2

n(x1 + x2 + · · ·+ xn)
=

x1 + x2 + · · ·+ xn

n
.

Thus, it is enough to prove that(
x1 + x2 + · · ·+ xn

n

) kn
t

≥ x1 · x2 · · · · · xn.

Since k = max {x1, x2, . . . , xn} ≥ min {x1, x2, . . . , xn} = t, we have that kn
t ≥ n

and since x1+x2+···+xn

n ≥ 1, because all the xi are positive integers, it is enough
to prove that (

x1 + x2 + · · ·+ xn

n

)n

≥ x1 · x2 · · · · · xn,

which is equivalent to the AM-GM inequality.
Because all the intermediate inequalities are valid as equalities when x1 =

x2 = · · · = xn, we conclude that equality happens when x1 = x2 = · · · = xn.

Solution 1.109. Using the substitution a = x
y , b = y

z and c = z
x , the inequality

takes the form
a3

a3 + 2
+

b3

b3 + 2
+

c3

c3 + 2
≥ 1,

and with the extra condition, abc = 1.
In order to prove this last inequality the extra condition is used as follows:

a3

a3 + 2
+

b3

b3 + 2
+

c3

c3 + 2
=

a3

a3 + 2abc
+

b3

b3 + 2abc
+

c3

c3 + 2abc

=
a2

a2 + 2bc
+

b2

b2 + 2ca
+

c2

c2 + 2ab

≥ (a + b + c)2

a2 + b2 + c2 + 2bc + 2ca + 2ab
= 1.

The inequality above follows from inequality (1.11).
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Solution 1.110. With the substitution x = a
b , y = b

c , z = c
a , the inequality takes

the form
a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
,

which is Nesbitt’s inequality (Example 1.4.8).

Solution 1.111. Use the substitution x1 = a2
a1

, x2 = a3
a2

, . . . , xn = a1
an

. Since
1

1+x1+x1x2
= 1

1+
a2
a1

+
a2
a1

a3
a2

= a1
a1+a2+a3

and similarly for the other terms on the

left-hand side of the inequality, the inequality we have to prove becomes

a1

a1 + a2 + a3
+

a2

a2 + a3 + a4
+ · · ·+ an

an + a1 + a2
> 1.

But this inequality is easy to prove. It is enough to observe that for all i = 1, . . . , n
we have

ai + ai+1 + ai+2 < a1 + a2 + · · ·+ an.

Solution 1.112. Using the substitution x = 1
a , y = 1

b , z = 1
c , the condition ab +

bc + ca = abc becomes x + y + z = 1 and the inequality is equivalent to

x4 + y4

x3 + y3
+

y4 + z4

y3 + z3
+

z4 + x4

z3 + x3
≥ 1 = x + y + z.

Tchebyshev’s inequality can be used to prove that

x4 + y4

2
≥ x3 + y3

2
x + y

2
,

thus
x4 + y4

x3 + y3
+

y4 + z4

y3 + z3
+

z4 + x4

z3 + x3
≥ x + y

2
+

y + z

2
+

z + x

2
.

Solution 1.113. The inequality on the right-hand side follows from inequality
(1.11). For the inequality on the left-hand side, the substitution x = bc

a , y = ca
b ,

z = ab
c transforms the inequality into

x + y + z

3
≥

√
yz + zx + xy

3
.

Squaring both sides, we obtain 3(xy + yz + zx) ≤ (x + y + z)2, which is valid if
and only if (xy + yz + zx) ≤ x2 + y2 + z2, something we already know.

Solution 1.114. Note that

a− 2
a + 1

+
b− 2
b + 1

+
c− 2
c + 1

≤ 0⇔ 3− 3
(

1
a + 1

+
1

b + 1
+

1
c + 1

)
≤ 0

⇔ 1 ≤ 1
a + 1

+
1

b + 1
+

1
c + 1

.
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Using the substitution a = 2x
y , b = 2y

z , c = 2z
x , we get

1
a + 1

+
1

b + 1
+

1
c + 1

=
1

2x
y + 1

+
1

2y
z + 1

+
1

2z
x + 1

=
y

2x + y
+

z

2y + z
+

x

2z + x

=
y2

2xy + y2
+

z2

2yz + z2
+

x2

2zx + x2

≥ (x + y + z)2

2xy + y2 + 2yz + z2 + 2zx + x2
= 1.

The only inequality in the expression follows from inequality (1.11).

Solution 1.115. Observe that

[5, 0, 0] =
2
6
(a5 + b5 + c5) ≥ 2

6
(a3bc + b3ca + c3ab) = [3, 1, 1],

where Muirhead’s theorem has been used.

Solution 1.116. Using Heron’s formula for the area of a triangle, we can rewrite
the inequality as

a2 + b2 + c2 ≥ 4
√

3

√
(a + b + c)

2
(a + b− c)

2
(a + c− b)

2
(b + c− a)

2
.

This is equivalent to

(a2 + b2 + c2)2 ≥ 3[((a + b)2 − c2)(c2 − (b− a)2)]

= 3(2c2a2 + 2c2b2 + 2a2b2 − (a4 + b4 + c4)),

that is, a4 + b4 + c4 ≥ a2b2 + b2c2 + c2a2, which, in terms of Muirhead’s theorem,
is equivalent to proving [4, 0, 0] ≥ [2, 2, 0].

Second solution. Using the substitution

x = a + b− c, y = a− b + c, z = −a + b + c,

we obtain x + y + z = a + b + c; then, using Heron’s formula we get

4(ABC) =
√

(a + b + c)(xyz) ≤
√

(a + b + c)
(x + y + z)3

27
=

(a + b + c)2

3
√

3
.

Now we only need to prove that (a+ b+ c)2 ≤ 3(a2 + b2 + c2). This last inequality
follows from Muirhead’s theorem, since [1, 1, 0] ≤ [2, 0, 0].
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Solution 1.117. Notice that

a

(a + b)(a + c)
+

b

(b + c)(b + a)
+

c

(c + a)(c + b)
≤ 9

4(a + b + c)
⇔ 8(ab + bc + ca)(a + b + c) ≤ 9(a + b)(b + c)(c + a)

⇔ 24abc + 8
∑

(a2b + ab2) ≤ 9
∑

(a2b + ab2) + 18abc

⇔ 6abc ≤ a2b + ab2 + b2c + bc2 + c2a + ca2

⇔ [1, 1, 1] ≤ [2, 1, 0] .

Solution 1.118. The inequality is equivalent to

a3 + b3 + c3 ≥ ab(a + b− c) + bc(b + c− a) + ca(c + a− b).

Setting x = a + b − c, y = b + c − a, z = a + c − b, we get a = z+x
2 , b = x+y

2 ,
c = y+z

2 . Then, the inequality we have to prove is

1
8
((z+x)3+(x+y)3+(y+z)3) ≥ 1

4
((z+x)(x+y)x+(x+y)(y+z)y+(y+z)(z+x)z),

which is again equivalent to

3(x2y + y2x + · · ·+ z2x) ≥ 2(x2y + · · · ) + 6xyz

or
x2y + y2x + y2z + z2y + z2x + x2z ≥ 6xyz,

and applying Muirhead’s theorem we obtain the result when x, y, z are non-
negative. If one of them is negative (and it cannot be more than one at a time),
we will get

x2(y + z) + y2(z + x) + z2(x + y) = x22c + y22a + z22b ≥ 0

but 6xyz is negative, which ends the proof.

Solution 1.119. Observe that

a3

b2 − bc + c2
+

b3

c2 − ca + a2
+

c3

a2 − ab + b2
≥ a + b + c

is equivalent to the inequality

a3(b + c)
b3 + c3

+
b3(c + a)
c3 + a3

+
c3(a + b)
a3 + b3

≥ a + b + c,

which in turn is equivalent to

a3(b + c)(a3 + c3)(a3 + b3) + b3(c + a)(b3 + c3)(a3 + b3)

+ c3(a + b)(a3 + c3)(b3 + c3)

≥ (a + b + c)(a3 + b3)(b3 + c3)(c3 + a3).
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The last inequality can be written in the terminology of Muirhead’s theorem as

[9, 1, 0] + [6, 4, 0] + [6, 3, 1] + [4, 3, 3] ≥
(

1
2
[1, 0, 0]

)(
[6, 3, 0] +

1
3
[3, 3, 3]

)
= [7, 3, 0] + [6, 4, 0] + [6, 3, 1] + [4, 3, 3]
⇔ [9, 1, 0] ≥ [7, 3, 0],

a direct result of Muirhead’s theorem.

Solution 1.120. Suppose that a ≤ b ≤ c, then

1
(1 + b) (1 + c)

≤ 1
(1 + c) (1 + a)

≤ 1
(1 + a) (1 + b)

.

Use Tchebyshev’s inequality to prove that

a3

(1 + b) (1 + c)
+

b3

(1 + c) (1 + a)
+

c3

(1 + a) (1 + b)

≥ 1
3
(a3 + b3 + c3)

(
1

(1 + b)(1 + c)
+

1
(1 + a)(1 + c)

+
1

(1 + a)(1 + b)

)

=
1
3
(a3 + b3 + c3)

3 + (a + b + c)
(1 + a)(1 + b)(1 + c)

.

Finally, use the facts that 1
3 (a3 + b3 + c3) ≥ (a+b+c

3 )3, a+b+c
3 ≥ 1 and (1 + a)(1 +

b)(1 + c) ≤ (
3+a+b+c

3

)3
to see that

1
3
(a3 + b3 + c3)

3 + (a + b + a)
(1 + a)(1 + b)(1 + c)

≥
(

a + b + c

3

)3 6
(1 + a+b+c

3 )3
≥ 6

8
.

For the last inequality, notice that
a+b+c

3

1 + a+b+c
3

≥ 1
2 .

Second solution. Multiplying by the common denominator and expanding both
sides, the desired inequality becomes

4(a4 + b4 + c4 + a3 + b3 + c3) ≥ 3(1 + a + b + c + ab + bc + ca + abc).

Since 4(a4 + b4 + c4 + a3 + b3 + c3) = 4(3[4, 0, 0] + 3[3, 0, 0]) and 3(1 + a + b + c +
ab + bc + ca + abc) = 3([0, 0, 0] + 3[1, 0, 0] + 3[1, 1, 0] + [1, 1, 1]), the inequality is
equivalent to

4[4, 0, 0] + 4[3, 0, 0] ≥ [0, 0, 0] + 3[1, 0, 0] + 3[1, 1, 0] + [1, 1, 1].

Now, note that

[4, 0, 0] ≥
[
4
3
,
4
3
,
4
3

]
= a

4
3 b

4
3 c

4
3 = 1 = [0, 0, 0],
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where it has been used that abc = 1. Also,

3[4, 0, 0] ≥ 3[2, 1, 1] = 3
1
3
(a2bc + b2ca + c2ab) = 3

1
3
(a + b + c) = 3[1, 0, 0]

and

3[3, 0, 0] ≥ 3
[
4
3
,
4
3
,
1
3

]
= 3

1
3

(
a

4
3 b

4
3 c

1
3 + b

4
3 c

4
3 a

1
3 + c

4
3 a

4
3 b

1
3

)
= 3

1
3
(ab + bc + ca) = 3[1, 0, 0].

Finally, [3, 0, 0] ≥ [1, 1, 1]. Adding these results, we get the desired inequality.

4.2 Solutions to the exercises in Chapter 2

Solution 2.1. (i) Draw a segment BC of length a, a circle with radius c and center
in B, and a circle with radius b and center in C, under what circumstances do
they intersect?
(ii) It follows from (i).
(iii) a = x + y, b = y + z, c = z + x⇔ x = a+c−b

2 , y = a+b−c
2 , z = b+c−a

2 .

Solution 2.2. (i) c < a + b ⇒ c < a + b + 2
√

ab = (
√

a +
√

b)2 ⇒ √
c <

√
a +

√
b.

(ii) With 2, 3 and 4 it is possible to construct a triangle but with 4, 9 and 16 it is
not possible to do so.
(iii) a < b < c ⇒ a + b < a + c < b + c ⇒ 1

b+c < 1
c+a < 1

a+b , then it is sufficient to
see that 1

a+b < 1
b+c + 1

c+a , and it will be even easier to see that 1
c < 1

b+c + 1
c+a .

Solution 2.3. Use the fact that if a, b, c are the lengths of the sides of a triangle,
the angle that is opposed to the side c is either 90◦ or acute or obtuse if c2 is equal,
less or greater than a2 + b2, respectively. Now, suppose that a ≤ b ≤ c ≤ d ≤ e
and that the segments (a, b, c) and (c, d, e) do not form an acute triangle; since
c2 ≥ a2 + b2 and e2 ≥ c2 + d2, we deduce that e2 ≥ a2 + b2 + d2 ≥ a2 + b2 + c2 ≥
a2 + b2 + a2 + b2 = (a + b)2 + (a − b)2 ≥ (a + b)2, hence a + b ≤ e, which is a
contradiction.

Solution 2.4. Since ∠A > ∠B then BC > CA. Using the triangle inequality we
obtain AB < BC + CA, and by the previous statement, AB < 2BC.

Solution 2.5. (i) Let O be the intersection point of the diagonals AC and BD.
Apply the triangle inequality to the triangles ABO and CDO. Adding the inequal-
ities, we get AB + CD < AC + BD. On the other hand, by hypothesis we have
that AB + BD < AC + CD. Adding these last two inequalities we get AB < AC.
(ii) Let DE be parallel to BC, then ∠EDA < ∠BCD < ∠A; therefore DE > 1

2AD
and hence 1

2AD < DE < BC. Refer to the previous exercise.
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Solution 2.6. Each di is less than the sum of the lengths of two sides. Also, use the
fact that in a convex quadrilateral the sum of the lengths of two opposite sides is
less than the sum of the lengths of the diagonals.

Solution 2.7. Use the triangle inequality in the triangles ABA′ and AA′C to prove
that c < ma + 1

2a and b < ma + 1
2a.

Solution 2.8. If α, β, γ are the angles of a triangle in A, B and C, respectively, and
if α1 = ∠BAA′ and α2 = ∠A′AC, then, using D2, β > α1 and γ > α2. Therefore,
180◦ = α + β + γ > α1 + α2 + α = 2α. Or, if we draw a circle with diameter BC,
A should lie outside the circle and then ∠BAC < 90◦.

Solution 2.9. Construct a parallelogram ABDC, with one diagonal BC and the
other AD which is equal to two times the length of AA′ and use D2 on the triangle
ABD.

Solution 2.10. Complete a parallelogram as in the previous solution to prove that
ma < b+c

2 . Similarly, mb < a+c
2 and mc < a+b

2 . To prove the left hand side
inequality, let A′, B′ and C′ be the midpoints of the sides BC, CA and AB,
respectively.

B C

A

A′

C′ A′′B′

Extend the segment C′B′ to a point A′′ such that C′A′′ = BC. Apply the previous
result to the triangle AA′A′′ with side-lengths ma, mb and mc.

Solution 2.11. Consider the quadrilateral ABCD and let O be a point on the
exterior of the quadrilateral so that AOB is similar to ACD, and thus OAC and
BAD are also similar. If O, B and C are collinear, we have an equality, otherwise
we have an inequality.17

Solution 2.12. Set a = AB, b = BC, c = CD, d = DA, m = AC and n = BD.
Let R be the radius of the circumcircle of ABCD. Thus we have18

(ABCD) = (ABC) + (CDA) =
m(ab + cd)

4R
,

(ABCD) = (BCD) + (DAB) =
n(bc + ad)

4R
.

17See [6, page 136] or [1, page 128].
18See [6, page 97] or [9, page 13].
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Therefore

m

n
=

bc + ad

ab + cd
> 1 ⇔ bc + ad > ab + cd

⇔ (d− b)(a− c) > 0.

Solution 2.13. Apply to the triangle ABP a rotation of 60◦ with center at A.
Under the rotation the point B goes to the point C, and let P ′ be the image of
P . The triangle PP ′C has as sides PP ′ = PA, P ′C = PB and PC, and then the
result.

A

B C

P

P ′

A

B
C

P
P ′

Second solution. Apply Ptolemy’s inequality (see Exercise 2.11) to the quadrilat-
erals ABCP , ABPC and APBC; after cancellation of common terms we obtain
that PB < PC + PA, PA < PC + PB and PC < PA + PB, respectively, which
establish the existence of the triangle.

Third solution. For the case when P is inside ABC. Let P ′ be the point where AP
intersects the side BC. Next, use that AP < AP ′ < AB = BC < PB + PC. In a
similar way, the other inequalities PB < PC + PA and PC < PA + PB hold.

Solution 2.14. Set a = AB, b = BC, x = AC, y = BD. Remember that in
a paralelogram we have 2(a2 + b2) = x2 + y2. We can suppose, without loss of
generality, that a ≤ b. It is clear that 2b < x + y, therefore (2b)2 < (x + y)2 =
x2 + y2 + 2xy = 2(a2 + b2) + 2xy. Simplifying, we get 2(b2 − a2) < 2xy.

Solution 2.15. (i) Extend the medians AA′, BB′ and CC′ until they intersect the
circumcircle at A1, B1 and C1, respectively. Use the power of A′ to establish that
A′A1 = a2

4ma
. Also, use the facts that ma + A′A1 ≤ 2R and that the length of

the median satisfies m2
a = 2(b2+c2)−a2

4 , that is, 4m2
a + a2 = 2(b2 + c2). We have

analogous expressions for mb and mc.
(ii) Use Ptolemy’s inequality in the quadrilaterals AC′GB′, BA′GC′ and CB′GA′,
where G denotes the centroid. For instance, from the first quadrilateral we get
2
3ma

a
2 ≤ b

2
mc

3 + c
2

mb

3 , then 2maa
2 ≤ abmc + camb.
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Solution 2.16. Using the formula 4m2
b +b2 = 2(c2+a2), we observe that m2

b−m2
c =

3
4 (c2−b2). Now, using the triangle inequality, prove that mb +mc < 3

2 (b+c). From
this you can deduce the left-hand side inequality.

The right-hand side inequality can be obtained from the first when applied
to the triangle of sides19 with lengths ma, mb and mc.

Solution 2.17. Let a, b, c be the lengths of the sides of ABC. If E and F are the
projections of Ia on the sides AB and CA, respectively, it is clear that if ra is the
radius of the excircle, we have that ra = IaE = EA = AF = FIa = s, where s is
the semiperimeter of ABC. Also, if ha is the altitude of the triangle ABC from
vertex A, then AD

DIa
= ha

ra
. Since aha = bc, we have that

AD

DIa
=

ha

ra
=

bc

as
=

(
abc

4R

)(
4Rr

a2

)(
1
rs

)
=

4Rr

a2
,

where r and R are the inradius and the circumradius of ABC, respectively. Since
2R = a and 2r = b+ c−a, therefore AD

DIa
= b+c−a

a = b+c
a −1. Then, it is enough to

prove that b+c
a ≤ √2 or, equivalently, that 2bc ≤ a2, but bc =

√
b2c2 ≤ b2+c2

2 = a2

2 .

Solution 2.18. Simplifying, the first inequality is equivalent to ab + bc + ca ≤
a2+b2+c2, which follows from Exercise 1.27. For the second one, expand (a+b+c)2

and use the triangle inequality to obtain a2 < a(b + c).

Solution 2.19. Use the previous suggestion.

Solution 2.20. Expand and you will get the previous exercise.

Solution 2.21. The first inequality is the Nesbitt’s inequality, Example 1.4.8. For
the second inequality use the fact that a + b > a+b+c

2 , then c
a+b < 2c

a+b+c .

Solution 2.22. Observe that a2 (b + c− a)+ b2 (c + a− b)+ c2 (a + b− c)−2abc =
(b + c− a) (c + a− b) (a + b− c), now see Example 2.2.3.

Solution 2.23. Observe that

a
(
b2 + c2 − a2

)
+b

(
c2 + a2 − b2

)
+ c

(
a2 + b2 − c2

)
= a2 (b + c− a) + b2 (c + a− b) + c2 (a + b− c) ,

now see Exercise 2.22.

Solution 2.24. Use Ravi’s transformation with a = y + z, b = z + x, c = x + y to
see first that

a2b(a− b) + b2c(b− c) + c2a(c− a) = 2(xy3 + yz3 + zx3)− 2(xy2z + x2yz + xyz2).

Then, the inequality is equivalent to x2

y + y2

z + z2

x ≥ x+y+z. Apply then inequality
(1.11).

19See the solution of Exercise 2.10.
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Solution 2.25. ∣∣∣∣a− b

a + b
+

b− c

b + c
+

c− a

c + a

∣∣∣∣ =
∣∣∣∣a− b

a + b
· b− c

b + c
· c− a

c + a

∣∣∣∣
<

cab

(a + b)(b + c)(c + a)
≤ 1

8
.

For the last inequality, see the solution of Example 2.2.3.

Solution 2.26. By Exercise 2.18,

3(ab + bc + ca) ≤ (a + b + c)2 ≤ 4(ab + bc + ca).

Then, since ab + bc + ca = 3, it follows that 9 ≤ (a + b + c)2 ≤ 12, and then the
result.

Solution 2.27. Use Ravi’s transformation, a = y + z, b = z + x and c = x + y. The
AM-GM inequality and the Cauchy-Schwarz inequality imply

1
a

+
1
b

+
1
c

=
1

y + z
+

1
z + x

+
1

x + y

≤ 1
2

(
1√
yz

+
1√
zx

+
1√
xy

)

=
√

x +
√

y +
√

z

2
√

xyz

≤
√

3
√

x + y + z

2
√

xyz

=
√

3
2

√
x + y + z

xyz
=
√

3
2r

.

For the last identity, see the end of the proof of Example 2.2.4.

Solution 2.28. The part (i) follows from the following equivalences:

(s− a)(s− b) < ab⇔ s2 − s(a + b) < 0
⇔ a + b + c < 2(a + b)
⇔ c < a + b.

For (ii), use Ravi’s transformation, a = y + z, b = z + x, c = x + y, in order
to see that the inequality is equivalent to

4(xy + yz + zx) ≤ (y + z)(z + x) + (z + x)(x + y) + (x + y)(y + z).

In turn, the last inequality follows from the inequality xy +yz+zx ≤ x2 +y2 +z2,
which is Exercise 1.27.
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Another way to obtain (ii) is the following: the given inequality is equivalent
to 3s2 − 2s(a + b + c) + (ab + bc + ca) ≤ ab+bc+ca

4 , which in turn is equivalent to
3(ab + bc + ca) ≤ 4s2. The last inequality can be rewritten as 3(ab + bc + ca) ≤
(a + b + c)2.

Solution 2.29. Applying the cosine law, we can see that√
a2 + b2 − c2

√
a2 − b2 + c2 =

√
2ab cos C

√
2ac cos B

= 2a
√

(b cos C)(c cos B)

≤ 2a
b cos C + c cos B

2
= a2.

Solution 2.30. Using the Cauchy-Schwarz inequality, for any x, y, z, w ≥ 0, we
have that √

xy +
√

zw ≤
√

(x + z)(y + w).

Therefore∑
cyclic

√
a2 + b2 − c2

√
a2 − b2 + c2 =

1
2

∑
cyclic

(√
a2 + b2 − c2

√
a2 − b2 + c2

+
√

c2 + a2 − b2
√

c2 − a2 + b2
)

≤ 1
2

∑
cyclic

√
(2a2)(2c2) =

∑
cyclic

ac.

Solution 2.31. Consider positive numbers x, y, z with a = y + z, b = z + x and
c = x + y. The inequalities are equivalent to proving that

y + z

2x
+

z + x

2y
+

x + y

2z
≥ 3 and

2x

y + z
+

2y

z + x
+

2z

x + y
≥ 3.

For the first inequality use the fact that y
x + x

y ≥ 2 and for the second inequality
use Nesbitt’s inequality.

Solution 2.32. Since in triangles with the same base, the ratio between its altitudes
is equal to the ratio of theirs areas, we have that

PQ

AD
+

PR

BE
+

PS

CF
=

(PBC)
(ABC)

+
(PCA)
(ABC)

+
(PAB)
(ABC)

=
(ABC)
(ABC)

= 1.

Use inequality (2.3) of Section 2.3.

Solution 2.33. (i) Recall that (S1 + S2 + S3)( 1
S1

+ 1
S2

+ 1
S3

) ≥ 9.
(ii) The non-common vertices of the triangles form a hexagon which is divided

into 6 triangles S1, S2, S3, T1, T2, T3, where Si and Ti have one common angle.
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Using the formula for the area that is related to the sine of the angle, prove that
S1S2S3 = T1T2T3. After this, use the AM-GM inequality as follows:

S

(
1
S1

+
1
S2

+
1
S3

)
≥ (S1 + S2 + S3 + T1 + T2 + T3)

(
1
S1

+
1
S2

+
1
S3

)

≥ 18 6
√

S1S2S3T1T2T3

3
√

S1S2S3

= 18.

The equality holds when the point O is the centroid of the triangle and the lines
through O are the medians of the triangle; in this case S1 = S2 = S3 = T1 = T2 =
T3 = 1

6S.

Solution 2.34. If P = G is the centroid, the equality is evident since AG
GL = BG

GM =
CG
GN = 2.

On the other hand, if AP
PL + BP

PM + CP
PN = 6, we have AL

PL + BM
PM + CN

PN = 9. It
is not difficult to see that PL

AL = (PBC)
(ABC) ,

PM
BM = (PCA)

(ABC) and PN
CN = (PAB)

(ABC) , therefore
PL
AL + PM

BM + PN
CN = 1. This implies that(

AL

PL
+

BM

PM
+

CN

PN

)(
PL

AL
+

PM

BM
+

PN

CN

)
= 9.

By inequality (2.3), the equality above holds only in the case when AL
PL = BM

PM =
CN
PN = 3, which implies that P is the centroid.

Solution 2.35. (i) It is known that HD = DD′, HE = EE′ and HF = FF ′, where
H is the orthocenter.20 Thus, the solution follows from part (i) of Example 2.3.4.
(ii) Since AD′

AD = AD+DD′
AD = 1 + HD

AD , we also have, after looking at the solution
to Example 2.3.4, that AD′

AD + BE′
BE + CF ′

CF = 1 + HD
AD + 1 + HE

BE + 1 + HF
CF = 4.

Since
(

AD
AD′ + BE

BE′ + CF
CF ′

) (
AD′
AD + BE′

BE + CF ′
CF

)
≥ 9, we have the result.

Solution 2.36. As it has been mentioned in the proof of Example 2.3.5, the length
of the internal bisector of angle A satisfies

l2a = bc

(
1−

(
a

b + c

)2
)

=
4bc

(b + c)2
(s(s− a)).

Since 4bc ≤ (b + c)2, it follows that l2a ≤ s(s − a) and lalb ≤ s
√

(s− a)(s− b) ≤
s (s−a)+(s−b)

2 = s c
2 .

Therefore, lalblc ≤ s
√

s(s− a)(s− b)(s− c) = s(sr), lalb + lblc + lcla ≤
s
(

a+b+c
2

)
= s2 and l2a + l2b + l2c ≤ s(s− a) + s(s− b) + s(s− c) = s2.

20See [6, page 85] or [9, page 37].
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Solution 2.37. Let α = ∠AMB, β = ∠BNA, γ = ∠APC, and let (ABC) be the
area of ABC. We have

(ABC) =
1
2
a · AM sin α =

abc

4R
.

Hence, bc
AM = 2R sin α. Similarly, ca

BN = 2R sin β and ab
CP = 2R sin γ. Thus,

bc

AM
+

ca

BN
+

ab

CP
= 2R(sinα + sin β + sin γ) ≤ 6R.

Equality is attained if M , N and P are the feet of the altitudes.

Solution 2.38. Let A1, B1, C1 be the midpoints of the sides BC, CA, AB, re-
spectively, and let B2, C2 be the reflections of A1 with respect to AB and CA,
respectively. Also, consider D as the intersection of AB with A1B2 and E the
intersection of CA with A1C2. Then,

2DE = B2C2 ≤ C2B1 + B1C1 + C1B2 = A1B1 + B1C1 + C1A1 = s.

Use the fact that the quadrilateral A1DAE is inscribed on a circle of diameter
AA1 and the sine law on ADE, to deduce that DE = AA1 sin A = ma sin A. Then,
s ≥ 2DE = 2ma sin A = 2ma

a
2R = ama

R , that is, ama ≤ sR. Similarly, we have
that bmb ≤ sR and cmc ≤ sR.

Solution 2.39. The inequality is equivalent to 8(s− a)(s− b)(s− c) ≤ abc, where
s is the semiperimeter.

Since (ABC) = sr = abc
4R =

√
s(s− a)(s− b)(s− c), where r and R denote

the inradius and the circumradius of ABC, respectively; we only have to prove
that 8sr2 ≤ abc, that is, 8sr2 ≤ 4Rrs, which is equivalent to 2r ≤ R.

Solution 2.40. The area of a triangle ABC satisfies the equalities (ABC) = abc
4R =

(a+b+c)r
2 , therefore 1

ab+
1
bc+ 1

ca = 1
2Rr ≥ 1

R2 , where R and r denote the circumradius
and the inradius, respectively.

Solution 2.41. Use Exercise 2.40 and the sine law.

Solution 2.42. Use that21 sin A
2 =

√
(s−b)(s−c)

bc , where s denotes the semiperimeter
of the triangle ABC, and similar expressions for sin B

2 and sin C
2 , to see that

sin
A

2
sin

B

2
sin

C

2
=

(s− a)(s− b)(s− c)
abc

=
sr2

abc
=

r

4R
≤ 1

8
,

where R and r are the circumradius and the inradius of ABC, respectively.

21Notice that sin2 A

2
=

1− cos A

2
=

1− b2+c2−a2

2bc

2
=

a2 − (b− c)2

4bc
=

(s− b)(s− c)

bc
.
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Solution 2.43. From inequality (2.3), we know that

(a + b + c)
(

1
a

+
1
b

+
1
c

)
≥ 9.

Since a + b + c ≤ 3
√

3R, we have

1
a

+
1
b

+
1
c
≥
√

3
R

. (4.4)

Applying, once more, inequality (2.3), we get

1
3

( π

2A
+

π

2B
+

π

2C

)
≥ 3

2
π (A + B + C)

=
3
2
. (4.5)

Let f(x) = log π
2x , since f ′′(x) = 1

x2 > 0, f is convex. Using Jensen’s inequality,
we get

1
3

(
log

π

2A
+ log

π

2B
+ log

π

2C

)
≥ log

[
1
3

( π

2A
+

π

2B
+

π

2C

)]
.

Applying (4.5) and the fact that log x is a strictly increasing function, we obtain

1
3

(
log

π

2A
+ log

π

2B
+ log

π

2C

)
≥ log

3
2
. (4.6)

We can suppose that a ≤ b ≤ c, which implies A ≤ B ≤ C. Therefore 1
a ≥ 1

b ≥ 1
c

and log π
2A ≥ log π

2B ≥ log π
2C . Using Tchebyshev’s inequality,

1
a

log
π

2A
+

1
b

log
π

2B
+

1
c

log
π

2C
≥

(
1
a

+
1
b

+
1
c

)(
log π

2A + log π
2B + log π

2C

3

)
.

Therefore, using (4.4) and (4.6) leads us to

1
a

log
π

2A
+

1
b

log
π

2B
+

1
c

log
π

2C
≥
√

3
R

log
3
2
.

Now, raising the expresions to the appropriate powers and taking the reciprocals,
we obtain the desired inequality. In all the above inequalities, the equality holds
if and only if a = b = c (this means, equality is obtained if and only if the triangle
is equilateral).

Solution 2.44. By the sine law, it follows that

sin A

a
=

sin B

b
=

sin C

c
=

1
2R

,
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where a, b, c are the lengths of the sides of the triangle and R is the circumradius
of the triangle. Thus,

sin2A + sin2B + sin2C =
a2

4R2
+

b2

4R2
+

c2

4R2

=
1

4R2
(a2 + b2 + c2)

≤ 1
4R2

· 9R2 =
9
4
,

where the inequality follows from Leibniz’s inequality.

Solution 2.45. Use Leibniz’s inequality and the fact that the area of a triangle is
given by (ABC) = abc

4R .

Solution 2.46. We note that the incircle of ABC is the circumcircle of DEF .
Applying Leibniz’s inequality to DEF , we get

EF 2 + FD2 + DE2 ≤ 9r2,

where r is the inradius of ABC. On the other hand, using Theorem 2.4.3 we obtain
s2 ≥ 27r2, hence

EF 2 + FD2 + DE2 ≤ s2

3
.

Solution 2.47.

a2

hbhc
+

b2

hcha
+

c2

hahb
=

a2bc + b2ca + c2ab

4(ABC)2
=

abc(a + b + c)
4(ABC)2

=
abc(a + b + c)

4abc
4R

(a+b+c)r
2

=
2R

r
≥ 4.

Solution 2.48. Remember that sin2 A
2 = 1−cos A

2 and use that cosA + cosB +
cosC ≤ 3

2 (see Example 2.5.2).

Solution 2.49. Observe that

4
√

3(ABC) ≤ 9abc

a + b + c
⇔ 4

√
3rs ≤ 9 · 4 Rrs

2s
⇔ 2

√
3s ≤ 9 R⇔ 2s

3
√

3
≤ R.

The last inequality was proved in Theorem 2.4.3.

Solution 2.50. Use the previous exercise and the inequality between the harmonic
mean and the geometric mean,

3
1
ab + 1

bc + 1
ca

≤ 3
√

a2b2c2.
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Solution 2.51. Use the previous exercise and the AM-GM inequality,

3
√

a2b2c2 ≤ a2 + b2 + c2

3
.

Solution 2.52. First, observe that if s = a+b+c
2 , then

a2 + b2 + c2−(a− b)2 − (b− c)2 − (c− a)2 =

= a2 − (b− c)2 + b2 − (c− a)2 + c2 − (a− b)2

= 4{(s− b)(s− c) + (s− c)(s− a) + (s− a)(s− b)}.

Hence, if x = s− a, y = s− b, z = s− c, then the inequality is equivalent to

√
3
√

xyz(x + y + z) ≤ xy + yz + zx.

Squaring and simplifying the last inequality, we get

xyz(x + y + z) ≤ x2y2 + y2z2 + z2x2.

This inequality can be deduced using Cauchy-Schwarz’s inequality with
(xy, yz, zx) and (zx, xy, yz).

Solution 2.53. Use Exercise 2.50 and the inequality 3 3
√

(ab)(bc)(ca) ≤ ab+bc+ca.

Solution 2.54. Note that

3(a + b + c)abc

ab + bc + ca
≥ 9abc

a + b + c
⇔ (a + b + c)2 ≥ 3(ab + bc + ca)

⇔ a2 + b2 + c2 ≥ ab + bc + ca,

now, use Exercise 2.49.

Solution 2.55. Using (2.5), (2.6) and (2.7) we can observe that a2+b2+c2+4abc =
1
2 − 2r2.

Solution 2.56. Observe the relationships used in the proof of Exercise 2.39,

(b + c− a)(c + a− b)(a + b− c)
abc

=
8(s− a)(s− b)(s− c)

abc

=
8s(s− a)(s− b)(s− c)

4Rs(abc
4R )

=
8(rs)2

4Rs(rs)
=

2r

R
.
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Solution 2.57. Observe that

a2

b + c− a
+

b2

c + a− b
+

c2

a + b− c
=

1
2

(
a2

s− a
+

b2

s− b
+

c2

s− c

)

=
1
2

(
sa

s− a
− a +

sb

s− b
− b +

sc

s− c
− c

)

=
s

2

(
a

s− a
+

b

s− b
+

c

s− c

)
− s

=
s

2

[
(a + b + c)s2 − 2(ab + bc + ca)s + 3abc

(s− a)(s− b)(s− c)

]
− s

=
s

2

[
2s3 − 2s(s2 + r2 + 4rR) + 3(4Rrs)

r2s

]
− s

=
2s(R− r)

r
≥ 2s(R− R

2 )
r

≥ 3
√

3rR

r
= 3

√
3R,

the last two inequalities follow from the fact that R ≥ 2r (which implies that
−r ≥ −R

2 ) and from s ≥ 3
√

3r, respectively.

Solution 2.58. Start on the side of the equations which expresses the relationship
between the τ ’s and perform the operations.

Solution 2.59. If x1, 1 − x1, x2, 1 − x2, . . . are the lengths into which each side
is divided for the corresponding point, we can deduce that a2 + b2 + c2 + d2 =∑

(x2
i + (1− xi)2). Prove that 1

2 ≤ 2(xi − 1
2 )2 + 1

2 = x2
i + (1− xi)2 ≤ 1.

For part (ii), the inequality on the right-hand side follows from the triangle
inequality. For the one on the left-hand side, use reflections on the sides, as you
can see in the figure.

b

a

c

d

Solution 2.60. This is similar to part (ii) of the previous problem.
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Solution 2.61. If ABC is the triangle and DEFGHI is the hexagon with DE,
FG, HI parallel to BC, AB, CA, respectively, we have that the perimeter of the
hexagon is 2(DE + FG+ HI). Let X , Y , Z be the tangency points of the incircle
with the sides BC, CA, AB, respectively, and let p = a+ b+ c be the perimeter of
the triangle ABC. Set x = AZ = AY , y = BZ = BX and z = CX = CY , then
we have the relations

DE

a
=

AE + ED + DA

p
=

2x

p
.

Similarly, we have the other relations

FG

c
=

2z

p
,

HI

b
=

2y

p
.

Therefore,

p(DEFGHI) =
4(xa + yb + zc)

p
=

4(a(s− a) + b(s− b) + c(s− c))
2s

=
4((a + b + c)s− (a2 + b2 + c2))

2s

= 2(a + b + c)− 4
(a2 + b2 + c2)
(a + b + c)

,

but a2 + b2 + c2 ≥ 1
3 (a + b + c)(a + b + c) by Tchebyshev’s inequality. Thus,

p(DEFGHI) ≤ 2(a + b + c)− 4
3 (a + b + c) = 2

3 (a + b + c).

Solution 2.62. Take the circumcircle of the equilateral triangle with side length 2.
The circles with centers the midpoints of the sides of the triangle and radii 1 cover
a circle of radius 2. If a circle of radius greater than 2

√
3

3 is covered by three circles
of radius 1, then one of the three circles covers a chord of length greater than 2.

Solution 2.63. Take the acute triangle with sides of lengths 2r1, 2r2 and 2r3, if it
exists. Its circumradius is the solution. If the triangle does not exist, the maximum
radius between r1, r2 and r3 is the answer.

Solution 2.64. We need two lemmas.
Lemma 1. If a square of side-length a lies inside a rectangle of sides c and d, then
a ≤ min {c, d}.

c

d

a
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Through the vertices of the square draw parallel lines to the sides of the
rectangle in such a way that those lines enclose the square as in the figure. Since
the parallel lines form a square inside the rectangle and such a square contains
the original square, we have the result.

Lemma 2. The diagonal of a square inscribed in a right triangle is less than or
equal to the length of the internal bisector of the right angle.

Let ABC be the right triangle with hypotenuse CA and let PQRS be the
inscribed square.

It can be assumed that the vertices P and Q belong to the legs of the right
triangle (otherwise, translate the square) and let O be the intersection point of
the diagonals PR and QS.

A

B C

R

S

T

P

Q

O

O′

V

Since BQOP is cyclic (∠B = ∠O = 90◦), it follows that ∠QBO = ∠QPO =
45◦, then O belongs to the internal bisector of ∠B. Let T be the intersection of
BO with RS, then ∠QBT = ∠QST = 45◦, therefore BQTS is cyclic and the
center O′ of the circumcircle of BQTS is the intersection of the perpendicular
bisectors of SQ and BT . But the perpendicular bisector of SQ is PR, hence the
point O′ belongs to PR, and if V is the midpoint of BT , we have that V OO′ is a
right triangle. Since O′O > O′V , then the chords SQ and BT satisfy SQ < BT ,
and the lemma follows.

Let us finish now the proof of the problem. Let ABCD be the square of side
1 and let l be a line that separates the two squares. If l is parallel to one of the
sides of the square ABCD, then Lemma 1 applies. Otherwise, l intersects every
line that determines a side of the square ABCD. Suppose that A is the farthest
vertex from l.
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a

b

A

B
C

D

G H

E

F

If l intersects the sides of ABCD in E, F , G, H as in the figure, we have, by
Lemma 2, that the sum of the lengths of the diagonals of the small squares is less
than or equal to AC, that is,

√
2(a + b) ≤ √2, then the result follows.

Solution 2.65. If α, β, γ are the central angles which open the chords of length a,
b, c, respectively, we have that a = 2 sin α

2 , b = 2 sin β
2 and c = 2 sin γ

2 . Therefore,

abc = 8 sin
α

2
sin

β

2
sin

γ

2
≤ 8 sin3

(
α + β + γ

6

)
= 8 sin3(30◦) = 1,

where the inequality follows from Exercise 1.81.

Solution 2.66. The first observation that we should make is to check that the
diagonals are parallel to the sides. Let X be the point of intersection between the
diagonals AD and CE. Now, the pentagon can be divided into

(ABCDE) = (ABC) + (ACX) + (CDE) + (EAX).

Since ABCX is a parallelogram, we have (ABC) = (CXA) = (CDE). Let a =
(CDX) = (EAX) and b = (DEX), then we get a

b = AX
XD = (CXA)

(CDX) = a+b
a , that

is, a
b = 1+

√
5

2 . Now we have all the elements to find (ABCDE).

Solution 2.67. Prove that sr = s1R = (ABC), where s1 is the semiperimeter of
the triangle DEF . To deduce this equality, it is sufficient to observe that the radii
OA, OB and OC are perpendicular to EF , FD and DE, respectively. Use also
that R ≥ 2r.

Solution 2.68. Suppose that the maximum angle is A and that it satisfies 60◦ ≤
A ≤ 90◦, then the lengths of the altitudes hb and hc are also less than 1. Now, use
the fact that (ABC) = hbhc

2 sin A and that
√

3
2 ≤ sinA ≤ 1. The obtuse triangle case

is easier.
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Solution 2.69. Let ABCD be the quadrilateral with sides of length a = AB,
b = BC, c = CD and d = DA.
(i) (ABCD) = (ABC) + (CDA) = ab sin B

2 + cd sin D
2 ≤ ab+cd

2 .
(ii) If ABCD is the quadrilateral mentioned with sides of length a, b, c and d,
consider the triangle BC′D which results from the reflection of DCB with respect
to the perpendicular bisector of side BD. The quadrilaterals ABCD and ABC′D
have the same area but the second one has sides of length a, c, b and d, in this
order. Now use (i).
(iii) (ABC) ≤ ab

2 , (BCD) ≤ bc
2 , (CDA) ≤ cd

2 and (DAB) ≤ da
2 .

Solution 2.70. In Example 2.7.6 we proved that

PA · PB · PC ≥ R

2r
(pa + pb)(pb + pc)(pc + pa).

Use the AM-GM inequality.

Solution 2.71. (i) PA2

pbpc
+ PB2

pcpa
+ PC2

papb
≥ 3 3

√
PA2

pbpc

PB2

pcpa

PC2

papb
≥ 3 3

√(
4R
r

)2 ≥ 12.

(ii) PA
pb+pc

+ PB
pc+pa

+ PC
pa+pb

≥ 3 3

√
PA

pb+pc

PB
pc+pa

PC
pa+pb

≥ 3 3

√
R
2r ≥ 3.

(iii) PA√
pbpc

+ PB√
pcpa

+ PC√
papb

≥ 3 3

√
PA√
pbpc

PB√
pcpa

PC√
papb

≥ 3 3

√
4R
r ≥ 6.

For the last inequalities in (i) and (iii), we have used Exercise 2.70. For the
last inequality in (ii), we have resorted to Example 2.7.6.
(iv) Proceed as in Example 2.7.5, that is, apply inversion in a circle with center P
and radius d (arbitrary, for instance d = pb). Let A′, B′, C′ be the inverses of A,
B, C, respectively. Let p′a, p′b, p′c be the distances from P to the sides B′C′, C′A′,
A′B′, respectively.

Let us prove that p′a = paPB′·PC′
d2 . We have

p′aB′C′ = 2(PB′C′) =
PB′ · PC′ ·B′C′

PA′1
=

paPB′ · PC′ · B′C′
d2

,

where A′1 is the inverse of A1, the projection of P on BC. Similarly, p′b = pbPC′·PA′

d2

and p′c = pcPA′·PB′

d2 .
The Erdős-Mordell inequality, applied to the triangle A′B′C′, guarantees us

that PA′ + PB′ + PC′ ≥ 2(p′a + p′b + p′c).
Now, since PA ·PA′ = PB ·PB′ = PC ·PC′ = d2, after substitution we get

1
PA

+
1

PB
+

1
PC

≥ 2
( pa

PB · PC
+

pb

PC · PA
+

pc

PC · PA

)
and this inequality is equivalent to

PB · PC + PC · PA + PA · PB ≥ 2(paPA + pbPB + pcPC).

Finally, to conclude use example 2.7.4.
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Solution 2.72. If P is an interior point or a point on the perimeter of the triangle
ABC, see the proof of Theorem 2.7.2.

If ha is the length of the altitude from vertex A, we have that the area of the
triangle ABC satisfies 2(ABC) = aha = apa + bpb + cpc.

Since ha ≤ PA + pa (even if pa ≤ 0, that is, if P is a point on the outside of
the triangle, on a different side of BC than A), and because the equality holds if P
is exactly on the segment of the altitude from the vertex A, therefore aPA+apa ≥
aha = apa + bpb + cpc, hence aPA ≥ bpb + cpc.

This inequality can be applied to triangle AB′C′ symmetric to ABC with
respect to the internal angle bisector of A, where aPA ≥ cpb + bpc, with equality
when AP passes through the point O.

Similarly, bPB ≥ apc + cpa and cPC ≥ apb + bpa, therefore

PA + PB + PC ≥
(

b

c
+

c

b

)
pa +

( c

a
+

a

c

)
pb +

(
a

b
+

b

a

)
pc.

We have the equality when P is the circumcenter O.

Second solution. Let L, M and N be the feet of the perpendicular from point
P to the sides BC, CA and AB, respectively. Let H and G be the orthogonal
projections of B and C, respectively, over the segment MN . Then BC ≥ HG =
HN + NM + MG.

Since ∠BNH = ∠ANM = ∠APM , the right triangles BNH and APM are
similar, therefore HN = PM

PA BN. In an analogous way we get MG = PN
PA CM .

Applying Ptolemy’s theorem to AMPN , we obtain PA ·MN = AN ·PM +
AM · PN , hence

MN =
AN · PM + AM · PN

PA
,

from there we get

BC ≥ PM

PA
BN +

AN · PM + AM · PN

PA
+

PN

PA
CM.

Therefore,

BC · PA ≥ PM ·AB + PN · CA.

Then, PA ≥ pb
c
a + pc

b
a . Similarly for the other two inequalities.

Solution 2.73. Take a sequence of reflections of the quadrilateral ABCD, as shown
in the figure.
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A B

C
D

A′

A′′

B′
B′′

D′
C′

S

P

Q
R

R′

P ′′

S′′

R′′

Note that the perimeter of PQRS is the sum of the lengths of the piecewise line
PQR′S′′P ′′. Note also that A′′B′′ is parallel to AB and that the shortest distance
is AA′′ as can be seen if we project O on the sides of the quadrilateral.

Solution 2.74. First note that (DEF ) = (ABC) − (AFE)− (FBD) − (EDC).
If x = BD, y = CE, z = AF , a− x = DC, b− y = EA and c− z = FB, we

have

(AFE)
(ABC)

=
z(b− y)

cb
,

(FBD)
(ABC)

=
x(c− z)

ac
and

(EDC)
(ABC)

=
y(a− x)

ba
.

Therefore,

(DEF )
(ABC)

= 1− z

c

(
1− y

b

)
− x

a

(
1− z

c

)
− y

b

(
1− x

a

)
=

(
1− x

a

)(
1− y

b

)(
1− z

c

)
+

x

a
· y

b
· z

c
= 2

x

a
· y

b
· z

c
.

The last equality follows from the fact that x
a−x · y

b−y · z
c−z = 1 which is guaranteed

because the cevians occur. Now, the last product is maximum when x
a = y

b =
z
c , and since the segments concur the common value is 1

2 . Thus P must be the
centroid.

Solution 2.75. If x = PD, y = PE and z = PF , we can deduce that 2(ABC) =
ax + by + cz. Using the Cauchy-Schwarz inequality,

(a + b + c)2 ≤
(

a

x
+

b

y
+

c

z

)
(ax + by + cz) .

Then a
x + b

y + c
z ≥ (a+b+c)2

2(ABC) and the equality holds when x = y = z, that is, when
P is the incenter.
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Solution 2.76. First, observe that BD2 +CE2 +AF 2 = DC2 +EA2 +FB2, where
BD2 −DC2 = PB2 − PC2 and similar relations have been used.

Now, (BD + DC)2 = a2, hence BD2 + DC2 = a2 − 2BD ·DC. Similarly for
the other two sides. Thus, BD2 + DC2 + CE2 + AE2 + AF 2 + FB2 = a2 + b2 +
c2 − 2(BD ·DC + CE ·AE + AF · FB).

In this way, the sum is minimum when (BD ·DC + CE ·AE + AF · FB) is
maximum. But BD ·DC ≤ (

BD+DC
2

)2
=

(
a
2

)2 and the maximum is attained when
BD = DC. Similarly, CE = EA and AF = FB, therefore P is the circumcenter.

Solution 2.77. Since 3
√

(aPD)(bPE)(cPF ) ≤ aPD+bPE+cPF
3 = 2(ABC)

3 , we can

deduce that PD · PE · PF ≤ 8
27

(ABC)3

abc . Moreover, the equality holds if and only
if aPD = bPE = cPF.

But c · PF = b · PE ⇔ (ABP ) = (CAP ) ⇔ P is on the median AA′.
Similarly, we can see that P is on the other medians, thus P is the centroid.

Solution 2.78. Using the technique for proving Leibniz’s theorem, verify that
3PG2 = PA2 + PB2 + PC2 − 1

3 (a2 + b2 + c2), where G is the centroid of ABC.
Therefore, the optimal point must be P = G.

Solution 2.79. The quadrilateral APMN is cyclic and it is inscribed in the circle of
diameter AP . The chord MN always opens the angle A (or 180◦−∠A), therefore
the length of MN will depend proportionally on the radius of the circumscribed
circle to APMN . The biggest circle will be attained when the diameter AP is the
biggest possible. This happens when P is diametrally opposed to A. In this case M

N

A

P

CB

M

and N coincide with B and C, respectively. Therefore the maximum chord MN
is BC.

Solution 2.80. The circumcircle of DEF is the nine-point circle of ABC, therefore
it intersects also the midpoints of the sides of ABC and goes through L, M , N ,
the midpoints of AH , BH, CH , respectively.
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C

O

H

M

F

A′D

A

N

B

∠A

EL

Note that t2a = AL · AD, then∑ t2a
ha

=
∑ AL · AD

AD
=

∑
AL =

∑
OA′

=
∑

R cosA ≤ 3R cos
A + B + C

3
= 3R cos 60◦ =

3
2
R.

Observe that we can prove a stronger result
∑ t2a

ha
= R + r, using the fact that

cosA + cosB + cosC = r
R + 1. See Lemma 2.5.2.

Solution 2.81. (i) Notice that

pa

ha
+

pb

hb
+

pc

hc
=

apa

aha
+

bpb

bhb
+

cpc

chc

=
2(PBC) + 2(PCA) + 2(PAB)

2(ABC)
= 1.

Now use the fact that(
pa

ha
+

pb

hb
+

pc

hc

)(
ha

pa
+

hb

pb
+

hc

pc

)
≥ 9.

(ii) Using the AM-GM inequality, we have

27
(

pa

ha

pb

hb

pc

hc

)
≤

(
pa

ha
+

pb

hb
+

pc

hc

)3

= 1,

where the last equality follows from (i).
(iii) Let x = (PBC), y = (PCA) and z = (PAB). Observe that a(ha − pa) =
aha − apa = 2(y + z) ≥ 4

√
yz. Similarly, we have that b(hb − pb) ≥ 4

√
zx y

c(hc − pc) ≥ 4
√

xy. Then,

a(ha − pa)b(hb − pb)c(hc − pc) ≥ 64xyz = 8(apabpbcpc).

Therefore, (ha − pa)(hb − pb)(hc − pc) ≥ 8papbpc.
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Solution 2.82. Assume that a < b < c, then of all the altitudes of ABC, AD is the
longest. If E is the projection of I on AD, it is enough to prove that AE ≥ AO = R.
Remember that the internal bisector of ∠A is also the internal bisector of ∠EAO.
If I is projected on E′ in the diameter AA′, then AE = AE′. Now prove that
AE′ ≥ AO, by proving that I is inside the acute triangle COF , where F is the
intersection of AA′ with BC.

To see that COF is an acute triangle, use that the angles of ABC satisfy
∠A < ∠B < ∠C, so that 1

2∠B < 90◦ − ∠A, 1
2∠C < 90◦ − ∠A. Use also that

∠COF = ∠A + ∠C − ∠B < 90◦.

Solution 2.83. Let ABC be a triangle with sides of lengths a, b and c. Using
Heron’s formula to calculate the area of the triangle, we have that

(ABC) =
√

s(s− a)(s− b)(s− c), where s =
a + b + c

2
. (4.7)

If s and c are fixed, then s − c is also fixed. Then the product 16(ABC)2 is
maximum when (s − a)(s − b) is maximum, that is, if s − a = s − b, which is
equivalent to a = b. Therefore the triangle is isosceles.

Solution 2.84. Let ABC be a triangle with sides of length a, b and c. Since the
perimeter is fixed, the semi-perimeter is also fixed. Using (4.7), we have that
16(ABC)2 is maximum when (s − a)(s − b)(s − c) is maximum. The product of
these three numbers is maximum when (s− a) = (s− b) = (s− c), that is, when
a = b = c. Therefore, the triangle is equilateral.

Solution 2.85. If a, b, c are the lengths of the sides of the triangle, observe that
a+b+c = 2R(sin∠A+sin∠B+sin∠C) ≤ 6R sin

(∠A+∠B+∠C
3

)
, since the function

sinx is concave. Moreover, equality holds when sin∠A = sin ∠B = sin ∠C.

Solution 2.86. The inequality (lm + mn + nl)(l + m + n) ≥ a2l + b2m + c2n is
equivalent to

l2 + m2 − c2

lm
+

m2 + n2 − b2

mn
+

n2 + l2 − a2

nl
+ 3 ≥ 0

⇔ cos∠APB + cos∠BPC + cos∠CPA +
3
2
≥ 0.

Now use the fact that cosα + cosβ + cos γ + 3
2 ≥ 0 is equivalent to (2 cos α+β

2 +
cos α−β

2 )2 + sin2(α−β
2 ) ≥ 0.

Solution 2.87. Consider the Fermat point F and let p1 = FA, p2 = FB and
p3 = FC, then observe first that (ABC) = 1

2 (p1p2 + p2p3 + p3p1) sin 120◦ =√
3

4 (p1p2 + p2p3 + p3p1). Also,

a2 + b2 + c2 = 2p2
1 + 2p2

2 + 2p2
3 − 2p1p2 cos 120◦ − 2p2p3 cos 120◦ − 2p3p1 cos 120◦

= 2(p2
1 + p2

2 + p2
3) + p1p2 + p2p3 + p3p1.
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Now, using the fact that x2 + y2 ≥ 2xy, we can deduce that a2 + b2 + c2 ≥
3(p1p2 + p2p3 + p3p1) = 3

(
4
3

√
3(ABC)

)
. Then, a2 + b2 + c2 ≥ 4

√
3(ABC).

Moreover, the equality a2 + b2 + c2 = 4
√

3(ABC) holds when p2
1 + p2

2 + p2
3 =

p1p2 + p2p3 + p3p2, that is, when p1 = p2 = p3 or, equivalently, when the triangle
is equilateral.

Solution 2.88. Let a, b, c be the lengths of the sides of the triangle ABC. In the
same manner as we proceeded in the previous exercise, define p1 = FA, p2 = FB
and p3 = FC. From the solution of the previous exercise we know that

4
√

3(ABC) = 3(p1p2 + p2p3 + p3p1).

Thus, we only need to prove that

3(p1p2 + p2p3 + p3p1) ≤ (p1 + p2 + p3)2,

but this is equivalent to p1p2 + p2p3 + p3p1 ≤ p2
1 + p2

2 + p2
3, which is Exercise 1.27.

Solution 2.89. As in the Fermat problem there are two cases, when in ABC all
angles are less than 120◦ or when there is an angle greater than 120◦.

In the first case the minimum of PA + PB + PC is CC′, where C′ is the
image of A when we rotate the figure in a positive direction through an angle of
60◦ having B as the center. Using the cosine law, we obtain

(CC′)2 = b2 + c2 − 2bc cos(A + 60◦)

= b2 + c2 − bc cosA + bc
√

3 sin A

=
1
2
(a2 + b2 + c2) + 2

√
3(ABC).

Now, use the fact that a2 + b2 + c2 ≥ 4
√

3(ABC) to obtain (CC′)2 ≥ 4
√

3(ABC).
Applying Theorem 2.4.3 we have that (ABC) ≥ 3

√
3r2, therefore (CC′)2 ≥ 36 r2.

When ∠A ≥ 120◦, the point that solves Fermat-Steiner problem is the point
A, then PA + PB + PC ≥ AB + AC = b + c. It suffices to prove that b + c ≥ 6r.
Moreover, we can use the fact that b = x + z, c = x + y and r =

√
xyz

x+y+z .

Second solution. It is clear that PA + pa ≥ ha, where pa is the distance from
P to BC and ha is the length of the altitude from A. Then ha + hb + hc ≤
(PA+PB +PC)+ (pa + pb + pc) ≤ 3

2 (PA+PB +PC), where the last inequality
follows from Erdős-Mordell’s theorem.

Now using Exercise 1.36 we have that 9 ≤ (ha + hb + hc)( 1
ha

+ 1
hb

+ 1
hc

) =
(ha + hb + hc)(1

r ). Therefore, 9r ≤ ha + hb + hc ≤ 3
2 (PA + PB + PC) and the

result follows.

Solution 2.90. First, we note that (A1B1C1) = 1
2A1B1 ·A1C1 · sin∠B1A1C1. Since

PB1CA1 is a cyclic quadrilateral with diameter PC, applying the sine law leads
us to A1B1 = PC sin C. Similarly, A1C1 = PB sin B.
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Call Q the intersection of BP with the circumcircle of triangle ABC, then
∠B1A1C1 = ∠QCP. In fact, since PB1CA1 is a cyclic quadrilateral we have
∠B1CP = ∠B1A1P . Similarly, ∠C1BP = ∠C1A1P . Then ∠B1A1C1 = ∠B1A1P
+ ∠C1A1P = ∠B1CP + ∠C1BP , but ∠C1BP = ∠ABQ = ∠ACQ. Therefore,
∠B1A1C1 = ∠B1CP + ∠ACQ = ∠QCP .

Once again, the sine law guarantees that sin ∠QCP
sin ∠BQC = PQ

PC .

(A1B1C1) =
1
2
A1B1 ·A1C1sin∠B1A1C1

=
1
2
PB · PCsin B sinC sin ∠QCP

=
1
2
PB · PC · sin B sin C

PQ

PC
sin ∠BQC

=
1
2
PB · PQ · sin A sin B sinC

=
(R2 −OP 2)(ABC)

4R2
.

The last equality holds true because the power of the point P with respect to
the circumcircle of ABC is PB · PQ = R2 − OP 2, and because (ABC) =
2R2sin A sin B sinC. The area of A1B1C1 is maximum when P = O, that is,
when A1B1C1 is the medial triangle.

�

�

B C

A

B1

A1

P

C1

O Q

4.3 Solutions to the problems in Chapter 3

Solution 3.1. Let a = A1A2, b = A1A3 and c = A1A4. Using Ptolemy’s theorem
in the quadrilateral A1A3A4A5, we can deduce that ab + ac = bc or, equivalently,
a
b + a

c = 1.
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Since the triangles A1A2A3 and B1B2B3 are similar, B1B2
B1B3

= A1A2
A1A3

= a
b

and from there we obtain B1B2 = a2

b . Similarly C1C2 = a2

c . Therefore SB+SC

SA
=

a2

b2 + a2

c2 = a2c2+a2b2

b2c2 = b2+c2

(b+c)2 > (b+c)2

2(b+c)2 = 1
2 . The third equality follows from

ab + ac = bc and the inequality follows from inequality (1.11). The inequality is
strict since b �= c.

Note that a2

b2 + a2

c2 =
(

a
b + a

c

)2 − 2a2

bc = 1− 2a2

bc .
The sine law applied to the triangle A1A3A4 leads us to

a2

bc
=

sin2 π
7

sin 2π
7 sin 4π

7

=
sin2 π

7

2 sin 2π
7 sin 2π

7 cos 2π
7

=
sin2 π

7

2(1− cos2 2π
7 ) cos 2π

7

=
sin2 π

7

2 cos 2π
7 (1 + cos 2π

7 )(1 − cos 2π
7 )

=
sin2 π

7

4 cos 2π
7 (1 + cos 2π

7 ) sin2 π
7

=
1

4 cos 2π
7 (1 + cos 2π

7 )

>
1

4 cos π
4 (1 + cos π

4 )
=

1

4
√

2
2 (1 +

√
2

2 )
=
√

2− 1
2

.

Thus a2

b2 + a2

c2 = 1− 2a2

bc < 1− (
√

2− 1) = 2−√2.

Solution 3.2. Cut the tetrahedron along the edges AD, BD, CD and place it on
the plane of the triangle ABC. The faces ABD, BCD and CAD will have as their
image the triangles ABD1, BCD2 and CAD3. Observe that D3, A and D1 are
collinear, as are D1, B and D2. Moreover, A is the midpoint of D1D3 (since both
D1A and D3A are equal in length to DA), and similarly B is the midpoint of D1D2.
Then AB = 1

2D2D3 and by the triangle inequality, D2D3 ≤ CD3 + CD2 = 2CD.
Hence AB ≤ CD, as desired.

Solution 3.3. Letting S be the area of the triangle, we have the formulae sin α = 2S
bc ,

sinβ = 2S
ca , sin γ = 2S

ab and r = S
s = 2S

a+b+c . Using these formulae we find that the
inequality to be proved is equivalent to(

a

bc
+

b

ca
+

c

ab

)
(a + b + c) ≥ 9,

which can be proved by applying the AM-GM inequality to each factor on the left
side.

Solution 3.4. Suppose that the circles have radii 1. Let P be the common point of
the circles and let A, B, C be the second intersection points of each pair of circles.
We have to minimize the common area between any pair of circles, which will be
minimum if the point P is in the interior of the triangle ABC (otherwise, rotate
one circle by 180◦ around P , and this will reduce the common area).

The area of the common parts is equal to π − (sin α + sin β + sin γ), where
α, β, γ are the central angles of the common arcs of the circles. It is clear that
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γB
β

α

A

γ
P

α

C

β

α+β+γ = 180◦. Since the function sinx is concave, the minimum is reached when
α = β = γ = π

3 , which implies that the centers of the circles form an equilateral
triangle.

Solution 3.5. Let I be the incenter of ABC, and draw the line through I perpendic-
ular to IC. Let D′, E′ be the intersections of this line with BC, CA, respectively.
First prove that (CDE) ≥ (CD′E′) by showing that the area of D′DI is greater
than or equal to the area of EE′I; to see this, observe that one of the triangles
DD′I, EE′I lies in the opposite side to C with respect to the line D′E′, if for
instance, it is DD′I, then this triangle will have a greater area than the area of
EE′I, then the claim.

Now, prove that the area (CD′E′) is 2r2

sin C ; to see this, note that CI = r
sin C

2

and that D′I = r
cos C

2
, then

(CD′E′) =
1
2
D′E′ · CI = D′I · CI =

2r2

2 sin C
2 cos C

2

=
2r2

sinC
≥ 2r2.

Solution 3.6. The key is to note that 2AX ≥ √3(AB+BX), which can be deduced
by applying Ptolemy’s inequality (Exercise 2.11) to the cyclic quadrilateral ABXO
that is formed when we glue the triangle ABX to the equilateral triangle AXO of
side AX , and then observing that the diameter of the circumcircle of the equilateral
triangle is 2√

3
AX , that is, AX(AB + BX) = AX · BO ≤ AX · 2√

3
AX . Hence

2AD = 2(AX + XD) ≥
√

3(AB + BX) + 2XD

≥
√

3(AB + BC + CX) +
√

3XD

≥
√

3(AB + BC + CD).

Solution 3.7. Take the triangle A′B′C′ of maximum area between all triangles
that can be formed with three points of the given set of points; then its area
satisfies (A′B′C′) ≤ 1. Construct another triangle ABC that has A′B′C′ as its
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medial triangle; this has an area (ABC) = 4(A′B′C′) ≤ 4. In ABC we can find
all the points. Indeed, if some point Q is outside of ABC, it will be in one of the
half-planes determined by the sides of the triangle and opposite to the half-plane
where the third vertex lies. For instance, if Q is in the half-plane determined by
BC, opposite to where A lies, the triangle QB′C′ has greater area than A′B′C′,
a contradiction.

Solution 3.8. Let M = 1+ 1
2 + · · ·+ 1

n . Let us prove that M is the desired minimum
value, which is achieved by setting x1 = x2 = · · · = xn = 1. Using the AM-GM
inequality, we get xk

k + (k − 1) ≥ kxk for all k. Therefore

x1+
x2

2

2
+

x3
3

3
+· · ·+ xn

n

n
≥ x1+x2− 1

2
+· · ·+xn− n− 1

n
= x1+x2+· · ·+xn−n+M.

On the other hand, the arithmetic-harmonic inequality leads us to

x1 + x2 + · · ·+ xn

n
≥ n

1
x1

+ 1
x1

+ · · ·+ 1
xn

= 1.

We conclude that the given expression is at least n − n + M = M . Since M is
achieved, it is the desired minimum.

Second solution. Apply the weighted AM-GM inequality to the numbers {xj
j} with

weights
{

tj =
1
j∑ 1

j

}
, to get

∑ xj
j

j
≥

(∑ 1
j

)
(x1x2 · · ·xn)

1∑ 1
j ≥

∑ 1
j
.

The last inequality follows from n n

√
1
x1
· · · 1

xn
≤∑ 1

xj
= n.

Solution 3.9. Note that AFE and BDC are equilateral triangles. Let C′ and F ′

be points outside the hexagon and such that ABC′ and DEF ′ are also equilateral
triangles. Since BE is the perpendicular bisector of AD, it follows that C′ and F ′

are the reflections of C and F on the line BE. Now use the fact that AC′BG and
EF ′DH are cyclic in order to conclude that AG + GB = GC′ and DH + HE =
HF ′.

Solution 3.10. Leibniz’s theorem implies OG2 = R2 − 1
9 (a2 + b2 + c2). Since

rs = abc
4R , we can deduce that 2rR = abc

a+b+c . Then we have to prove that abc ≤
(a+b+c)

3
(a2+b2+c2)

3 , for which we can use the AM-GM inequality.

Solution 3.11. The left-hand side of the inequality follows from

√
1 + x0 + x1 + · · ·+ xi−1

√
xi + · · ·+ xn ≤ 1

2
(1 + x0 + · · ·+ xn) = 1.
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For the right-hand side consider θi = arcsin (x0 + · · ·+ xi) for i = 0, . . . , n. Note
that √

1 + x0 + · · ·+ xi−1

√
xi + · · ·+ xn =

√
1 + sin θi−1

√
1− sin θi−1

= cos θi−1.

It is left to prove that
∑ sin θi−sin θi−1

cos θi−1
< π

2 . But

sin θi − sin θi−1 = 2 cos
θi + θi−1

2
sin

θi − θi−1

2
< (cos θi−1)(θi − θi−1).

To show the inequality, use the facts that cos θ is a decreasing function and that
sin θ ≤ θ for 0 ≤ θ ≤ π

2 . Then

∑ sin θi − sin θi−1

cos θi−1
<

∑
θi − θi−1 = θn − θ0 =

π

2
.

Solution 3.12. If
∑n

i=1 xi = 1, then 1 = (
∑n

i=1 xi)
2 =

∑n
i=1 x2

i + 2
∑

i<j xixj .
Therefore the inequality that we need to prove is equivalent to

1
n− 1

≤
n∑

i=1

x2
i

1− ai
.

Use the Cauchy-Schwarz inequality to prove that(
n∑

i=1

xi

)2

≤
n∑

i=1

x2
i

1− ai

n∑
i=1

(1− ai) .

Solution 3.13. First prove that
∑n

i=1 xn+1(xn+1−xi) = (n−1)x2
n+1. The inequality

that we need to prove is reduced to

n∑
i=1

√
xi(xn+1 − xi) ≤

√
n− 1xn+1.

Now use the Cauchy-Schwarz inequality with the following two n-sets of real num-
bers: (

√
x1, . . . ,

√
xn) and (

√
xn+1 − x1, . . . ,

√
xn+1 − xn).

Solution 3.14. First, recall that N is also the midpoint of the segment that joins
the midpoints X and Y of the diagonals AC and BD. The circle of diameter OM
goes through X and Y since OX and OY are perpendiculars to the corresponding
diagonals, and ON is a median of the triangle OXY .

Solution 3.15. The inequality on the right-hand side follows from wx + xy + yz +
zw = (w + y)(x + z) = −(w + y)2 ≤ 0.
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For the inequality on the left-hand side, note that

|wx + xy + yz + zw| = |(w + y)(x + z)|
≤ 1

2

[
(w + y)2 + (x + z)2

]
≤ w2 + x2 + y2 + z2 = 1.

We can again use the Cauchy-Schwarz inequality to obtain

|wx + xy + yz + zw|2 ≤ (w2 + x2 + y2 + z2)(x2 + y2 + z2 + w2) = 1.

Solution 3.16. For the inequality on the left-hand side, rearrange as follows:

an + a2

a1
+

a1 + a3

a2
+ · · ·+ an−1 + a1

an
=

a1

a2
+

a2

a1
+

a3

a2
+

a2

a3
+ · · ·+ a1

an
+

an

a1
,

now, use the fact that
(

x
y + y

x

)
≥ 2.

Set Sn = an+a2
a1

+ a1+a3
a2

+ a2+a4
a3

+ · · ·+ an−1+a1
an

. Using induction, prove that
Sn ≤ 3n.

First, for n = 3, we need to see that b+c
a + c+a

b + a+b
c ≤ 9. If a = b = c,

then b+c
a + c+a

b + a+b
c = 6 and the inequality is true. Suppose that a ≤ b ≤ c and

that not all numbers are equal, then we have three cases: a = b < c, a < b = c,
a < b < c. In all of them, we have a ≤ b and a < c. Hence 2c = c + c > a + b and
a+b

c < 2, and since a+b
c is a positive integer we have c = a + b.

Thus, b+c
a + c+a

b + a+b
c = a+2b

a + 2a+b
b + 1 = 3 + 2 b

a + 2a
b . Since 2 b

a and 2a
b

are positive integers, and since
(
2 b

a

) (
2a

b

)
= 4, we have that either both numbers

are equal to 2 or one number is 1 and the other is 4. This means the sum is at
most 8, which is less than 9, then the result.

We continue with the induction. Suppose that Sn−1 ≤ 3(n − 1). Consider
{a1, . . . , an}, if all are equal, then Sn = 2n and the inequality is true. Suppose
instead that there are at least two differents ai’s. Take the maximum of the ai’s;
its neighbors (ai−1, ai+1) can be equal to this maximum value, but since there are
two different numbers between the ai’s for some maximum ai, we have that one of
its neighbors is less than ai. We can then assume, without loss of generality, that
an is maximum and that one of its neighbors, an−1 or a1, is less than an. Then,
since 2an > an−1 +a1, we have that an−1+a1

an
< 2 and then an−1+a1

an
= 1, for which

an = an−1 + a1. When we substitute this value of an in Sn, we get

Sn =
an−1 + a1 + a2

a1
+

a2 + a3

a2
+ · · ·+ an−2 + an−1 + a1

an−1
+

an−1 + a1

an−1 + a1

= 1 +
an−1 + a2

a1
+

a2 + a3

a2
+ · · ·+ an−2 + a1

an−1
+ 1 + 1.

Since Sn−1 ≤ 3(n− 1), this implies that Sn ≤ 3n.
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Solution 3.17. Since the quadrilateral OBDC is cyclic, use Ptolemy’s theorem to
prove that OD = R

(
BD
BC + DC

BC

)
, where R is the circumradius of ABC. On the

other hand, since the triangles BCE and DCA are similar, as well as the triangles
ABD and FBC, it happens that R

(
BD
BC + DC

BC

)
= R

(
AD
FC + AD

EB

)
. We can find

similar equalities for OE and OF , OE = R
(

BE
AD + BE

CF

)
and OF = R

(
CF
BE + CF

AD

)
.

Multiplying these equalities and applying the AM-GM inequality, the result is
attained.

Another way to prove this is using inversion. Let D′, E′ and F ′ be the
intersection points of AO, BO and CO with the sides BC, CA and AB, re-
spectively. Invert the sides BC, CA and AB with respect to (O, R), obtain-
ing the circumcircles of the triangles OBC, OCA and OAB, respectively. Then,
OD · OD′ = OE · OE′ = OF · OF ′ = R2. If x = (ABO), y = (BCO) and
z = (CAO), we can deduce that

AO

OD′
=

z + x

y
,

BO

OE′
=

x + y

z
and

CO

OF ′
=

y + z

x
.

This implies, using the AM-GM inequality, that R3

OD′·OE′·OF ′ ≥ 8; therefore, OD ·
OE ·OF ≥ 8R3.

Solution 3.18. First, observe that AY ≤ 2R and that ha ≤ AX , where ha is the
length of the altitude on BC. Then we can deduce that∑ la

sin2 A
=

∑ AX

AY sin2 A

≥
∑ ha

2R sin2 A

=
∑ ha

a sinA

(
since

sin A

a
=

1
2R

)

≥ 3 3

√
ha

a sinA

hb

b sinB

hc

c sinC

= 3

since ha = b sin C, hb = c sin A, hc = a sin B.

Solution 3.19. Without loss of generality, x1 ≤ x2 ≤ · · · ≤ xn. Since 1 < 2 < · · · <
n, we have, using the rearrangement inequality (1.2), that

A = x1 + 2x2 + · · ·+ nxn ≥ nx1 + (n− 1)x2 + · · ·+ xn = B.

Then, |A + B| = |(n + 1) (x1 + · · ·+ xn)| = n + 1, hence A + B = ±(n + 1). Now,
if A + B = (n + 1) it follows that B ≤ n+1

2 ≤ A, and if A + B = −(n + 1), it is
the case that B ≤ −n+1

2 ≤ A
If we now assume that n+1

2 or −n+1
2 is between B and A, otherwise A or B

would be in the interval
[−n+1

2 , n+1
2

]
, then either |A| or |B| is less than or equal

to n+1
2 and we can solve the problem.
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Suppose therefore that B ≤ −n+1
2 < n+1

2 ≤ A.
Let y1, . . ., yn be a permutation of x1, . . ., xn such that 1y1+2y2+· · ·+nyn =

C takes the maximum value with C ≤ −n+1
2 . Take i such that y1 ≤ y2 ≤ · · · ≤ yi

and yi > yi+1 and consider

D = y1 + 2y2 + · · ·+ iyi+1 + (i + 1)yi + (i + 2)yi+2 + · · ·+ nyn

D − C = iyi+1 + (i + 1)yi − (iyi + (i + 1)yi+1) = yi − yi+1 > 0.

Since |yi|, |yi+1| ≤ n+1
2 , we can deduce that D − C = yi − yi+1 ≤ n + 1; hence

D ≤ C + n + 1 and therefore C < D ≤ C + n + 1 ≤ n+1
2 .

On the other hand, D ≥ −n+1
2 , since C is the maximum sum which is less

than −n+1
2 . Thus −n+1

2 ≤ D ≤ n+1
2 and then |D| ≤ n+1

2 .

Solution 3.20. Among the numbers x, y, z two have the same sign (say x and y),
since c = z

(
x
y + y

x

)
is positive, we can deduce that z is positive.

Note that a + b− c = 2xy
z , b + c− a = 2yz

x , c + a− b = 2zx
y are positive.

Conversely, if u = a + b − c, v = b + c − a and w = c + a − b are positive,
taking u = 2xy

z , v = 2yz
x , w = 2zx

y , we can obtain a = u+w
2 = x

(
y
z + z

y

)
, and so

on.

Solution 3.21. First, prove that a centrally symmetric hexagon ABCDEF has
opposite parallel sides. Thus, (ACE) = (BDF ) = (ABCDEF )

2 . Now, if we reflect
the triangle PQR with respect to the symmetry center of the hexagon, we get
the points P ′, Q′, R′ which form the centrally symmetric hexagon PR′QP ′RQ′,
inscribed in ABCDEF with area 2(PQR).

Solution 3.22. Let X =
∑4

i=1 x3
i , Xi = X − x3

i ; it is then evident that X =
1
3

∑4
i=1 Xi. Using the AM-GM inequality leads to 1

3X1 ≥ 3
√

x3
2x

3
3x

3
4 = 1

x1
; similar

inequalities hold for the other indexes and this implies that X ≥∑4
i=1

1
xi

.
Using Tchebyshev’s inequality we obtain

x3
1 + x3

2 + x3
3 + x3

4

4
≥ x2

1 + x2
2 + x2

3 + x2
4

4
· x1 + x2 + x3 + x4

4
.

Thanks to the AM-GM inequality we get x2
1+x2

2+x2
3+x2

4
4 ≥ 4

√
(x1x2x3x4)2 = 1, and

therefore X ≥∑
i=1 xi.

Solution 3.23. Use the Cauchy-Schwarz inequality with u =
(√

x−1√
x

,
√

y−1√
y ,

√
z−1√

z

)
and v =

(√
x,
√

y,
√

z
)
.

Solution 3.24. If α = ∠ACM and β = ∠BDM , then MA·MB
MC·MD = tanα tan β and

α+β = π
4 . Now use the fact that tan α tan β tan γ ≤ tan3

(
α+β+γ

3

)
, where γ = π

4 .
Another method uses the fact that the inequality is equivalent to (MCD) ≥

3
√

3(MAB) which is equivalent to h+l
h ≥ 3

√
3, where l is the length of the side of

the square and h is the length of the altitude from M to AB. Find the maximum
h.
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Solution 3.25. First note that PL
AL + PM

BM + PN
CN = 1. Now, use the fact that AL,

BM and CN are less than a.

Solution 3.26. Since PB
PA · QC

QA ≤ 1
4

(
PB
PA + QC

QA

)2

, it is sufficient to see that PB
PA +

QC
QA = 1.

�

A

B C

G

A′

B′

C′

P

Q

Draw BB′, CC′ parallel to the median AA′ in such a way that B′ and
C′ are on PQ. The triangles APG and BPB′ are similar, as well as AQG and
CQC′, thus PB

PA = BB′
AG and QC

QA = CC′
AG . Use this together with the fact that

AG = 2GA′ = BB′ + CC′.

Solution 3.27. Let Γ be the circumcircle of ABC, and let R be its radius. Consider
the inversion in Γ. For any point P other than O, let P ′ be its inverse. The inverse
of the circumcircle of OBC is the line BC, then A′1, the inverse of A1, is the
intersection point between the ray OA1 and BC. Since22

P ′Q′ =
R2 · PQ

OP ·OQ

for two points P , Q (distinct from O) with inverses P ′, Q′, we have

AA1

OA1
=

R2 · A′A′1
OA′ ·OA′1 ·OA1

=
AA′1
OA

=
x + y + z

y + z
,

where x, y, z denote the areas of the triangles OBC, OCA, OAB, respectively.
Similarly, we have that

BB1

OB1
=

x + y + z

z + x
and

CC1

OC1
=

x + y + z

x + y
.

Thus

AA1

OA1
+

BB1

OB1
+

CC1

OC1
= (x + y + z)

(
1

y + z
+

1
z + x

+
1

x + y

)
≥ 9

2
.

For the last inequality, see Exercise 1.44.
22See [5, page 132] or [9, page 112].
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Solution 3.28. The area of the triangle GBC is (GBC) = (ABC)
3 = a·GL

2 . Therefore
GL = 2(ABC)

3a . Similarly, GN = 2(ABC)
3c .

In consequence,

(GNL) =
GL ·GN sinB

2
=

4(ABC)2 sin B

18ac

=
4(ABC)2b2

(18abc)(2R)
=

(ABC)2 b2

(9R abc
4R )(4R)

=
(ABC) b2

9 · 4R2
.

Similarly, (GLM) = (ABC) c2

9·4R2 and (GMN) = (ABC) a2

9·4R2 . Therefore,

(LMN)
(ABC)

=
1
9

(
a2 + b2 + c2

4R2

)
=

R2 −OG2

4R2
.

The inequality in the right follows easily.
For the other inequality, note that OG = 1

3OH . Since the triangle is acute,
H is inside the triangle and HO ≤ R. Therefore,

(LMN)
(ABC)

=
R2 − 1

9OH2

4R2
≥ R2 − 1

9R2

4R2
=

2
9

>
4
27

.

Solution 3.29. The function f(x) = 1
1+x is convex for x > 0. Thus,

f(ab) + f(bc) + f(ca)
3

≥ f

(
ab + bc + ca

3

)
=

3
3 + ab + bc + ca

≥ 3
3 + a2 + b2 + c2

=
1
2
,

the last inequality follows from ab + bc + ca ≤ a2 + b2 + c2.
We can also begin with

1
1 + ab

+
1

1 + bc
+

1
1 + ca

≥ 9
3 + ab + bc + ca

≥ 9
3 + a2 + b2 + c2

=
3
2
.

The first inequality follows from inequality (1.11) and the second from Exercise
1.27.

Solution 3.30. Set x = b + 2c, y = c + 2a, z = a + 2b. The desired inequality
becomes (

x

y
+

y

x

)
+

(
y

z
+

z

y

)
+

( z

x
+

x

z

)
+ 3

(
y

x
+

z

y
+

x

z

)
≥ 15,
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which can be proved using the AM-GM inequality. Another way of doing it is the
following:

a

b + 2c
+

b

c + 2a
+

c

a + 2b
=

a2

ab + 2ca
+

b2

bc + 2ab
+

c2

ca + 2bc
≥ (a + b + c)2

3(ab + bc + ca)
.

The inequality follows from inequality (1.11). It remains to prove the inequality
(a + b + c)2 ≥ 3(ab + bc + ca), which is a consequence of the Cauchy-Schwarz
inequality.

Solution 3.31. Use the inequality (1.11) or use the Cauchy-Schwarz inequality with(
a√

a + b
,

b√
b + c

,
c√

c + d
,

d√
d + a

)
and (

√
a + b,

√
b + c,

√
c + d,

√
d + a).

Solution 3.32. Let x = b + c− a, y = c + a− b and z = a + b− c. The similarity
between the triangles ADE and ABC gives us

DE

a
=

perimeter of ADE

perimeter of ABC
=

2x

a + b + c
.

Thus, DE = x(y+z)
x+y+z ; that is, the inequality is equivalent to x(y+z)

x+y+z ≤ x+y+z
4 . Now

use the AM-GM inequality.

Solution 3.33. Take F on AD with AF = BC and define E′ as the intersection
of BF and AC. Using the sine law in the triangles AE′F , BCE′ and BDF , we
obtain

AE′

E′C
=

AF sin F

sin E′
· sin E′

BC sinB
=

sin F

sin B
=

BD

FD
=

AE

EC
,

therefore E′ = E.
Subsequently, consider G on BD with BG = AD and H the intersection

point of GE with the parallel to BC passing through A. Use the fact that the
triangles ECG and EAH are similar and also use Menelaus’s theorem for the
triangle CAD with transversal EFB to conclude that AH = DB. Hence, BDAH
is a parallelogram, BH = AD and BHG is isosceles with BH = BG = AD > BE.

Solution 3.34. Note that ab + bc + ca ≤ 3abc if and only if 1
a + 1

b + 1
c ≤ 3. Since

(a + b + c)
(

1
a

+
1
b

+
1
c

)
≥ 9,

we should have that (a + b + c) ≥ 3. Then

3(a + b + c) ≤ (a + b + c)2

=
(
a3/2a−1/2 + b3/2b−1/2 + c3/2c−1/2

)2

≤ (
a3 + b3 + c3

)(1
a

+
1
b

+
1
c

)
≤ 3

(
a3 + b3 + c3

)
.
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Solution 3.35. Take yi = xi

n−1 for all i = 1, 2, . . . , n and suppose that the inequality
is false, that is,

1
1 + y1

+
1

1 + y2
+ · · ·+ 1

1 + yn
> n− 1.

Then

1
1 + yi

>
∑
j �=i

(
1− 1

1 + yj

)
=

∑
j �=i

yj

1 + yj

≥ (n− 1) n−1

√
y1 · · · ŷi · · · yn

(1 + y1) · · · ̂(1 + yi) · · · (1 + yn)
,

where y1 · · · ŷi · · · yn is the product of the y’s except yi. Then
n∏

i=1

1
1 + yi

> (n− 1)n y1 · · · yn

(1 + y1) · · · (1 + yn)
,

and this implies 1 > x1 · · ·xn, a contradiction.

Solution 3.36. Use the Cauchy-Schwarz inequality with
(√

x1
y1

, . . . ,
√

xn

yn

)
and(√

x1y1, . . . ,
√

xnyn

)
to get

(x1 + · · ·+ xn)2 =
(√

x1

y1

√
x1y1 + · · ·+

√
xn

yn

√
xnyn

)2

≤
(

x1

y1
+ · · ·+ xn

yn

)
(x1y1 + · · ·+ xnyn) .

Now use the hypothesis
∑

xiyi ≤
∑

xi.

Solution 3.37. Since abc = 1, we have

(a− 1)(b− 1)(c− 1) = a + b + c−
(

1
a

+
1
b

+
1
c

)
and similarly

(an − 1)(bn − 1)(cn − 1) = an + bn + cn −
(

1
an

+
1
bn

+
1
cn

)
.

The proof follows from the fact that the left sides of the equalities have the same
sign.

Solution 3.38. We prove the claim using induction on n. The case n = 1 is clear.
Now assuming the claim is true for n, we can prove it is true for n + 1.
Since n <

√
n2 + i < n + 1, for i = 1, 2, . . . , 2n, we have

{√
n2 + i

}
=

√
n2 + i− n <

√
n2 + i +

(
i

2n

)2

− n =
i

2n
.
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Thus

(n+1)2∑
j=1

{√
j
}

=
n2∑

j=1

{√
j
}

+
(n+1)2∑
j=n2+1

{√
j
}
≤ n2 − 1

2
+

1
2n

2n∑
i=1

i

=
(n + 1)2 − 1

2
.

Solution 3.39. Let us prove that the converse affirmation, that is, x3 + y3 > 2,

implies that x2 + y3 < x3 + y4. The power mean inequality
√

x2+y2

2 ≤ 3

√
x3+y3

2

implies that

x2 + y2 ≤ (x3 + y3)2/3 3
√

2 < (x3 + y3)2/3(x3 + y3)1/3 = x3 + y3.

Then x2 − x3 < y3 − y2 ≤ y4 − y3. The last inequality follows from the fact that
y2(y − 1)2 ≥ 0.

Second solution. Since (y− 1)2 ≥ 0, we have that 2y ≤ y2 +1, then 2y3 ≤ y4 + y2.
Thus, x3 + y3 ≤ x3 + y4 + y2 − y3 ≤ x2 + y2, since x3 + y4 ≤ x2 + y3.

Solution 3.40. The inequality is equivalent to

(x0 − x1) +
1

(x0 − x1)
+ (x1 − x2) + · · ·+ (xn−1 − xn) +

1
(xn−1 − xn)

≥ 2n.

Solution 3.41. Since a+3b
4 ≥ 4

√
ab3, b+4c

5 ≥ 5
√

bc4 and c+2a
3 ≥ 3

√
ca2, we can deduce

that
(a + 3b)(b + 4c)(c + 2a) ≥ 60a

11
12 b

19
20 c

17
15 .

Now prove that c
2
15 ≥ a

1
12 b

1
20 or, equivalently, that c8 ≥ a5b3.

Solution 3.42. We have an equivalence between the following inequalities:

7(ab + bc + ca) ≤ 2 + 9 abc

⇔ 7(ab + bc + ca)(a + b + c) ≤ 2(a + b + c)3 + 9 abc

⇔ a2b + a b2 + b2c + b c2 + c2a + c a2 ≤ 2(a3 + b3 + c3.)

For the last one use the rearrangement inequality or Tchebyshev’s inequality.

Solution 3.43. Let E be the intersection of AC and BD. Then the triangles ABE
and DCE are similar, which implies

|AB − CD|
|AC −BD| =

|AB|
|AE − EB| .

Using the triangle inequality in ABE, we have |AB|
|AE−EB| ≥ 1 and we therefore

conclude that |AB − CD| ≥ |AC −BD|. Similarly, |AD −BC| ≥ |AC −BD|.
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Solution 3.44. First of all, show that a1 + · · · + aj ≥ j(j+1)
2n an, for j ≤ n, in the

following way. First, prove that the inequality is valid for j = n, that is, a1 + · · ·+
an ≥ n+1

2 an; use the fact that 2(a1+· · ·+an) = (a1+an−1)+· · ·+(an−1+a1)+2an.
Next, prove that if bj = a1+···+aj

1+···+j , then b1 ≥ b2 ≥ · · · ≥ bn ≥ an

n (to prove by
induction that bj ≥ bj+1, we need to show that bj ≥ aj+1

j+1 which, on the other
hand, follows from the first part for n = j + 1).

We provide another proof of a1 + · · · + aj ≥ j(j+1)
2n an, once again using

induction. It is clear that
a1 ≥ a1,

a1 +
a2

2
=

a1

2
+

a1

2
+

a2

2
≥ a2

2
+

a2

2
= a2.

Now, let us suppose that the affirmation is valid for n = 1, . . . , j, that is,

a1 ≥ a1

a1 +
a2

2
≥ a2

...

a1 +
a2

2
+ · · ·+ aj

j
≥ aj .

Adding all the above inequalities, we obtain

ja1 + (j − 1)
a2

2
+ · · ·+ aj

j
≥ a1 + · · ·+ aj .

Adding on both sides the identity

a1 + 2
a2

2
+ · · ·+ j

aj

j
= aj + · · ·+ a1,

we obtain

(j + 1)
(

a1 +
a2

2
+ · · ·+ aj

j

)
≥ (a1 + aj) + (a2 + aj−1) + · · ·+ (aj + a1) ≥ jaj+1.

Hence
a1 +

a2

2
+ · · ·+ aj

j
≥ j

j + 1
aj+1.

Finally, adding aj+1
j+1 on both sides of the inequality provides the final step in the

induction proof.
Now,

a1 +
a2

2
+ · · ·+ an

n
=

1
n

(a1 + · · ·+ an) +
n−1∑
j=1

(
1
j
− 1

j + 1

)
(a1 + · · ·+ aj)

≥ 1
n

(
n(n + 1)

2n
an

)
+

n−1∑
j=1

1
j(j + 1)

j(j + 1)
2n

an = an.
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Solution 3.45. ⎛
⎝ ∑

1≤i≤n

xi

⎞
⎠4

=

⎛
⎝ ∑

1≤i≤n

x2
i + 2

∑
1≤i<j≤n

xixj

⎞
⎠2

≥ 4

⎛
⎝ ∑

1≤i≤n

x2
i

⎞
⎠

⎛
⎝2

∑
1≤i<j≤n

xixj

⎞
⎠

= 8

⎛
⎝ ∑

1≤i≤n

x2
i

⎞
⎠

⎛
⎝ ∑

1≤i<j≤n

xixj

⎞
⎠

= 8
∑

1≤i<j≤n

xixj(x2
1 + · · ·+ x2

n)

≥ 8
∑

1≤i<j≤n

xixj(x2
i + x2

j ).

For the first inequality apply the AM-GM inequality.
To determine when the equality occurs, note that in the last step, two of

the xi must be different from zero and the other n − 2 equal to zero; also in the
step where the AM-GM inequality was used, the xi which are different from zero
should in fact be equal. We can prove that in such a case the constant C = 1

8 is
the minimum.

Solution 3.46. Setting 3
√

a = x and 3
√

b = y, we need to prove that (x2 + y2)3 ≤
2(x3 + y3)2 for x, y > 0.

Using the AM-GM inequality we have

3x4y2 ≤ x6 + x3y3 + x3y3

and
3x2y4 ≤ y6 + x3y3 + x3y3,

with equality if and only if x6 = x3y3 = y6 or, equivalently, if and only if x = y.
Adding together these two inequalities and adding x6 + y6 to both sides, we get

x6 + y6 + 3x2y2(x2 + y2) ≤ 2(x6 + y6 + 2x3y3).

Equality occurs when x = y, that is, when a = b.

Solution 3.47. Denote the left-hand side of the inequality as S. Since a ≥ b ≥ c
and x ≥ y ≥ z, using the rearrangement inequality we have bz +cy ≤ by+cz, then

(by + cz)(bz + cy) ≤ (by + cz)2 ≤ 2((by)2 + (cz)2).

Setting α = (ax)2, β = (by)2, γ = (cz)2, we obtain

a2x2

(by + cz)(bz + cy)
≥ a2x2

2((by)2 + (cz)2)
=

α

2(β + γ)
.
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Adding together the other two similar inequalities, we get

S ≥ 1
2

(
α

β + γ
+

β

γ + α
+

γ

α + β

)
.

Use Nesbitt’s inequality to conclude the proof.

Solution 3.48. If XM is a median in the triangle XY Z, then XM2 = 1
2XY 2 +

1
2XZ2 − 1

4Y Z2, a result of using Stewart’s theorem. If we take (X, Y, Z, M) to
be equal to (A, B, C, P ), (B, C, D, Q), (C, D, A, R) and (D, A, B, S), and then
substitute them in the formula, we then add together the four resulting equations
to get a fifth equation. Multiplying both sides of the fifth equation by 4, we find
that the left-hand side of the desired inequality equals AB2+BC2 +CD2+DA2+
4(AC2 + BD2). Thus, it is sufficient to prove that AC2 + BD2 ≤ AB2 + BC2 +
CD2 +DA2. This inequality is known as the “parallelogram inequality”. To prove
it, let O be an arbitrary point on the plane, and for each point X let x denote the
vector from O to X . We expand each term in AB2 + BC2 + CD2 + DA2−AC2−
BD2, writing for instance

AB2 = |a− b|2 = |a|2 − 2a · b + |b|2

and then finding that the expression equals

|a|2 + |b|2 + |c|2 + |d|2 − 2(a · b + b · c + c · d + d · a− a · c− b · d)

= |a + c− b− d|2 ≥ 0,

with equality if and only if a + c = b + d, that is, only if the quadrilateral ABCD
is a parallelogram.

Solution 3.49. Put A = x2 + y2 + z2, B = xy + yz + zx, C = x2y2 + y2z2 + z2x2,
D = xyz. Then 1 = A+2B, B2 = C+2xyz(x+y+z) = C+2D and x4 +y4+z4 =
A2 − 2C = 4B2 − 4B + 1− 2C = 2C − 4B + 8D + 1. Then, the expression in the
middle is equal to

3− 2A + (2C − 4B + 8D + 1) = 2 + 2C + 8D ≥ 2,

with equality if and only if two out of the x, y, z are zero.
Now, the right-hand expression is equal to 2+B +D. Thus we have to prove

that 2C+8D ≤ B+D or B−2B2−3D ≥ 0. Using the Cauchy-Schwarz inequality,
we get A ≥ B, so that B(1 − 2B) = BA ≥ B2. Thus it is sufficient to prove that
B2− 3D = C−D ≥ 0. But C ≥ xyyz + yzzx+ zxxy = D as can be deduced from
the Cauchy-Schwarz inequality.

Solution 3.50. Suppose that a = x
y , b = y

z , c = z
x . The inequality is equivalent to(

x

y
− 1 +

z

y

)(y

z
− 1 +

x

z

)( z

x
− 1 +

y

x

)
≤ 1
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and can be rewritten as (x+z−y)(x+y−z)(y+z−x) ≤ xyz. This last inequality
is valid if x, y, z are the lengths of the sides of a triangle. See Example 2.2.3.

A case remains when some out of the u = x+z−y, v = x+y−z, w = y+z−x
are negative. If one or three of them are negative, then the left side is negative
and the inequality is clear. If two of the values u, v, w are negative, for instance
u and v, then u + v = 2x is also negative; but x > 0, so that this last situation is
not possible.

Solution 3.51. First note that abc ≤ a + b + c implies (abc)2 ≤ (a + b + c)2 ≤
3(a2 + b2 + c2), where the last inequality follows from inequality (1.11).

By the AM-GM inequality, a2 + b2 + c2 ≥ 3 3
√

(abc)2, then (a2 + b2 + c2)3 ≥
33(abc)2. Therefore (a2 + b2 + c2)4 ≥ 32(abc)4.

Solution 3.52. Using the AM-GM inequality,

(a + b)(a + c) = a(a + b + c) + bc ≥ 2
√

abc(a + b + c).

Second solution. Setting x = a + b, y = a + c, z = b + c, and since a, b, c are
positive, we can deduce that x, y, z are the side lengths of a triangle XY Z. Thus,
the inequality is equivalent to xy

2 ≥ (XY Z) as can be seen using the formula for
the area of a triangle in Section 2.2. Now, recall that the area of a triangle with
side lengths x, y, z is less than or equal to xy

2 .

Solution 3.53. Since xi ≥ 0, then xi − 1 ≥ −1. Next, we can use Bernoulli’s
inequality for all i to get

(1 + (xi − 1))i ≥ 1 + i(xi − 1).

Adding these inequalities together for 1 ≤ i ≤ n, gives us the result.

Solution 3.54. Subtracting 2, we find that the inequalities are equivalent to

0 <
(a + b− c)(a− b + c)(−a + b + c)

abc
≤ 1.

The left-hand side inequality is now obvious. The right-hand side inequality is
Example 2.2.3.

Solution 3.55. If we prove that a√
a2+8bc

≥ a4/3

a4/3+b4/3+c4/3 , it will be clear how to
get the result. The last inequality is equivalent to(

a4/3 + b
4/3

+ c
4/3

)2

≥ a2/3(a2 + 8bc).

Apply the AM-GM inequality to each factor of(
a4/3 + b

4/3
+ c

4/3
)2

−
(
a4/3

)2

=
(
b
4/3

+ c
4/3

)(
a4/3 + a4/3 + b

4/3
+ c

4/3
)

.
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Another method for solving this exercise is to consider the function f(x) = 1√
x
,

this function is convex for x > 0 (f ′′(x) = 3

4
√

x5 > 0). For 0 < a, b, c < 1, with

a + b + c = 1, we can deduce that a√
x

+ b√
y + c√

z
≥ 1√

ax+by+cz
. Applying this

to x = a2 + 8bc, y = b2 + 8ca and z = c2 + 8ab (previously multiplying by an
appropriate factor to have the condition a + b + c = 1), we get

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1√
a3 + b3 + c3 + 24abc

.

Also use the fact that

(a + b + c)3 = a3 + b3 + c3 + 3(a2b + a2c + b2a + b2c + c2a + c2b) + 6abc

≥ a3 + b3 + c3 + 24abc.

Solution 3.56. Using the Cauchy-Schwarz inequality
∑

aibi ≤
√∑

a2
i

√∑
b2
i with

ai = 1, bi = xi

1+x2
1+x2

2+···+x2
i
, we can deduce that

x1

1 + x2
1

+
x2

1 + x2
1 + x2

2

+ · · ·+ xn

1 + x2
1 + · · ·+ x2

n

≤ √n
√∑

b2
i .

Then, it suffices to show that
∑

b2
i < 1.

Observe that for i ≥ 2,

b2
i =

(
xi

1 + x2
1 + · · ·+ x2

i

)2

=
x2

i

(1 + x2
1 + · · ·+ x2

i )2

≤ x2
i

(1 + x2
1 + · · ·+ x2

i−1)(1 + x2
1 + · · ·+ x2

i )

=
1

(1 + x2
1 + · · ·+ x2

i−1)
− 1

(1 + x2
1 + · · ·+ x2

i )
.

For i = 1, use the fact that b2
1 ≤ x2

1
1+x2

1
= 1− 1

1+x2
1
. Adding together these inequal-

ities, the right-hand side telescopes to yield∑
b2
i =

n∑
i=1

(
xi

1 + x2
1 + · · ·+ x2

i

)2

≤ 1− 1
1 + x2

1 + · · ·+ x2
n

< 1.

Solution 3.57. Since there are only two possible values for α, β, γ, the three must
either all be equal, or else two are equal and one is different from these two.
Therefore, we have two cases to consider.

(1) α = β = γ. In this case we have a + b + c = 0, and therefore(
a3 + b3 + c3

abc

)2

=
(

a3 + b3 − (a + b)3

−ab(a + b)

)2

=
(

(a + b)2 − a2 + ab− b2

ab

)2

=
(

3ab

ab

)2

= 9.
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(2) Without loss of generality, we assume that α = β, γ �= α, then c = a + b
and

a3 + b3 + c3

abc
=

a3 + b3 + (a + b)3

ab(a + b)
=

(a + b)2 + a2 − ab + b2

ab

=
2a2 + 2b2 + ab

ab
= 2

(
a

b
+

b

a

)
+ 1.

If a and b have the same sign, we see that this expression is not less than 5, and
its square is therefore no less than 25. If the signs of a and b are not the same, we
have a

b + b
a ≤ −2, therefore 2

(
a
b + b

a

)
+ 1 ≤ −3 and

(
2
(

a
b + b

a

)
+ 1

)2 ≥ 9.
Thus, the smallest possible value is 9.

Solution 3.58. Using the AM-GM inequality, 1
b(a+b) + 1

c(b+c) + 1
a(c+a) ≥ 3

XY , where

X = 3
√

abc, Y = 3
√

(a + b)(b + c)(c + a). Using AM-GM inequality again gives
X ≤ a+b+c

3 and Y ≤ 2a+b+c
3 , then 3

XY ≥ (
27
2

)
1

(a+b+c)2 .

Solution 3.59. The inequality is equivalent to a4 + b4 + c4 ≥ a2bc + b2ca + c2ab,
which follows using Muirhead’s theorem since [4, 0, 0] ≥ [2, 1, 1].

Second solution.

a3

bc
+

b3

ca
+

c3

ab
=

a4

abc
+

b4

abc
+

c4

abc

≥ (a2 + b2 + c2)2

3abc

≥ (a + b + c)4

27abc
=

(
a + b + c

3

)3 (a + b + c)
abc

≥ (abc)
(

a + b + c

abc

)
= a + b + c.

In the first two inequalities we applied inequality (1.11), and in the last inequality
we used the AM-GM inequality.

Solution 3.60. Take f(x) as f(x) = x
1−x . Since f ′′(x) = 2

(1−x)3 > 0, f(x) is convex.
Using Jensen’s inequality we get f(x) + f(y) + f(z) ≥ 3f(x+y+z

3 ). But since f is
increasing for x < 1, and because the AM-GM inequality helps us to establish
that x+y+z

3 ≥ 3
√

xyz, then we can deduce that f(x+y+z
3 ) ≥ f( 3

√
xyz).

Solution 3.61. (
a

b + c
+

1
2

)(
b

c + a
+

1
2

)(
c

a + b
+

1
2

)
≥ 1

is equivalent to (2a + b + c)(2b + c + a)(2c + a + b) ≥ 8(b + c)(c + a)(a + b). Now,
observe that (2a + b + c) = (a + b + a + c) ≥ 2

√
(a + b)(c + a).
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Solution 3.62. The inequality of the problem is equivalent to the following inequal-
ity:

(a + b− c)(a + b + c)
c2

+
(b + c− a)(b + c + a)

a2
+

(c + a− b)(c + a + b)
b2

≥ 9,

which in turn is equivalent to (a+b)2

c2 + (b+c)2

a2 + (c+a)2

b2 ≥ 12. Since (a + b)2 ≥ 4ab,
(b + c)2 ≥ 4bc and (c + a)2 ≥ 4ca, we can deduce that

(a + b)2

c2
+

(b + c)2

a2
+

(c + a)2

b2
≥ 4ab

c2
+

4bc

a2
+

4ca

b2
≥ 12 3

√
(ab)(bc)(ca)

c2a2b2
= 12.

Solution 3.63. By the AM-GM inequality, x2 +
√

x +
√

x ≥ 3x. Adding similar
inequalities for y, z, we get x2 + y2 + z2 + 2(

√
x +

√
y +

√
z) ≥ 3(x + y + z) =

(x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx).

Solution 3.64. If we multiply the equality 1 = 1
a + 1

b + 1
c by

√
abc, we get

√
abc =√

ab
c +

√
bc
a +

√
ca
b . Then, it is sufficient to prove that

√
c + ab ≥ √

c +
√

ab
c .

Squaring shows that this is equivalent to c + ab ≥ c + ab
c + 2

√
ab, c + ab ≥

c + ab(1− 1
a − 1

b ) + 2
√

ab or a + b ≥ 2
√

ab.

Solution 3.65. Since (1− a)(1− b)(1− c) = 1− (a + b+ c)+ ab+ bc+ ca− abc and
since a + b + c = 2, the inequality is equivalent to

0 ≤ (1− a)(1 − b)(1− c) ≤ 1
27

.

But a < b + c = 2− a implies that a < 1 and, similarly, b < 1 and c < 1, therefore
the left inequality is true. The other one follows from the AM-GM inequality.

Solution 3.66. It is possible to construct another triangle AA1M with sides AA1,
A1M , MA of lengths equal to the lengths of the medians ma, mb, mc.

A

C

C1

A1

B1
M

B

Moreover, (AA1M) = 3
4 (ABC). Then the inequality we have to prove is

1
mamb

+
1

mbmc
+

1
mcma

≤ 3
4

√
3

(AA1M)
.
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Now, the last inequality will be true if the triangle with side-lengths a, b, c and
area S satisfies the following inequality:

1
ab

+
1
bc

+
1
ca
≤ 3

√
3

4S
.

Or equivalently, 4
√

3 S ≤ 9abc
a+b+c , which is Example 2.4.6.

Solution 3.67. Substitute cd = 1
ab and da = 1

bc , so that the left-hand side (LHS)
inequality becomes

1 + ab

1 + a
+

1 + ab

ab + abc
+

1 + bc

1 + b
+

1 + bc

bc + bcd
(4.8)

= (1 + ab)
(

1
1 + a

+
1

ab + abc

)
+ (1 + bc)

(
1

1 + b
+

1
bc + bcd

)
.

Now, using the inequality 1
x + 1

y ≥ 4
x+y , we get

(LHS) ≥ (1 + ab)
4

1 + a + ab + abc
+ (1 + bc)

4
1 + b + bc + bcd

= 4
(

1 + ab

1 + a + ab + abc
+

1 + bc

1 + b + bc + bcd

)

= 4
(

1 + ab

1 + a + ab + abc
+

a + abc

a + ab + abc + abcd

)
= 4.

Solution 3.68. Using Stewart’s theorem we can deduce that

l2a = bc

(
1−

(
a

b + c

)2
)

=
bc

(b + c)2
((b + c)2 − a2) ≤ 1

4
((b + c)2 − a2).

Using the Cauchy-Schwarz inequality leads us to

(la + lb + lc)2 ≤ 3(l2a + l2b + l2c)

≤ 3
4
((a + b)2 + (b + c)2 + (c + a)2 − a2 − b2 − c2)

≤ 3
4
(a + b + c)2.

Solution 3.69. Since 1
1−a = 1

b+c , the inequality is equivalent to

1
b + c

+
1

c + a
+

1
a + b

≥ 2
2a + b + c

+
2

2b + a + c
+

2
2c + a + b

.

Now, using the fact that 1
x + 1

y ≥ 4
x+y , we have

2
(

1
b + c

+
1

c + a
+

1
a + b

)
≥ 4

a + b + 2c
+

4
b + c + 2a

+
4

c + a + 2b

which proves the inequality.
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Solution 3.70. We may take a ≤ b ≤ c. Then c < a + b and

n
√

2
2

=
n
√

2
2

(a + b + c) >
n
√

2
2

(2c) = n
√

2cn ≥ n
√

bn + cn.

Since a ≤ b, we can deduce that(
b +

a

2

)n

= bn + nbn−1 a

2
+ other positive terms

> bn +
n

2
abn−1 ≥ bn + an.

Similarly, since a ≤ c, we have (c + a
2 )n > cn + an, therefore

(an + bn)
1
n + (bn + cn)

1
n + (cn + an)

1
n < b +

a

2
+

n
√

2
2

+ c +
a

2

= a + b + c +
n
√

2
2

= 1 +
n
√

2
2

.

Second solution. Remember that a, b, c are the lengths of the sides of a triangle if
and only if there exist positive numbers x, y, z with a = y+z, b = z+x, c = x+y.
Since a + b + c = 1, we can deduce that x + y + z = 1

2 .
Now, we use Minkowski’s inequality

(
n∑

i=1

(xi + yi)m

) 1
m

≤
(

n∑
i=1

xm
i

) 1
m

+

(
n∑

i=1

ym
i

) 1
m

to get

(an + bn)
1
n = ((y + z)n + (z + x)n)

1
n ≤ (xn + yn)

1
n + (2zn)

1
n < c + n

√
2z.

Similarly, (bn + cn)
1
n < a + n

√
2x and (cn + an)

1
n < b + n

√
2y. Therefore

(an + bn)
1
n + (bn + cn)

1
n + (cn + an)

1
n < a + b + c + n

√
2(x + y + z) = 1 +

n
√

2
2

.

Solution 3.71. First notice that if we restrict the sums to i < j, then they are
halved. The left-hand side sum is squared while the right-hand side sum is not,
so that the desired inequality with sums restricted to i < j has (1/3), instead of
(2/3), on the right-hand side.

Consider the sum of all the |xi − xj | with i < j. The number x1 appears in
(n − 1) terms with negative sign, x2 appears in one term with positive sign and
(n− 2) terms with negative sign, and so on. Thus, we get

−(n− 1)x1 − (n− 3)x2 − (n− 5)x3 − · · ·+ (n− 1)xn =
∑

(2i− 1− n)xi.
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We can now apply the Cauchy-Schwarz inequality to show that the square of this
sum is less than

∑
x2

i

∑
(2i− 1− n)2.

Looking at the sum at the other side of the desired inequality, we immediately
see that it is n

∑
x2

i − (
∑

xi)2. We would like to get rid of the second term, which
is easy because if we add h to every xi the sums in the desired inequality are
unaffected (since they only involve differences of the xi), so we can choose an h to
make

∑
xi zero. Thus, we can finish if we can prove that

∑
(2i−1−n)2 = n(n2−1)

3 ,∑
(2i− 1− n)2 = 4

∑
i2 − 4(n + 1)

∑
i + n(n + 1)2

=
2
3
n(n + 1)(2n + 1)− 2n(n + 1)2 + n(n + 1)2

=
1
3
n(n + 1)(2(2n + 1)− 6(n + 1) + 3(n + 1))

=
1
3
n(n2 − 1).

This establishes the required inequality.

Second solution. The inequality is of the Cauchy-Schwarz type, and since the prob-
lem asks us to prove that equality holds when x1, x2, . . . , xn form an arithmetic
progression, that is, when xi−xj = r(i−j) with r > 0, then consider the following
inequality which is true, as can be inferred from the Cauchy-Schwarz inequality,⎛

⎝∑
i,j

|i− j||xi − xj |
⎞
⎠2

≤
∑
i,j

(i− j)2
∑
i,j

(xi − xj)2.

Here, we already know that equality holds if and only if (xi − xj) = r(i− j), with
r > 0.

Since
∑
i,j

(i− j)2 = (2n− 2) · 12 + (2n− 4) · 22 + · · ·+ 2 · (n− 1)2 = n2(n2−1)
6 ,

we need to prove that
∑
i,j

|i− j| |xi − xj | = n
2

∑
i,j

|xj − xj |. To see that it happens

compare the coefficient of xi in each side. On the left-hand side the coefficient is

(i− 1) + (i− 2) + · · ·+ (i− (i− 1))− ((i + 1)− i) + ((i + 2)− i) + · · ·+ (n− i))

=
(i− 1)i

2
− (n− i)(n− i + 1)

2
=

n(2i− n− 1)
2

.

The coefficient of xi on the right-hand side is

n

2

⎛
⎝∑

i<j

1 +
∑
j>i

− 1

⎞
⎠ =

n

2
((i− 1)− (n− i)) =

n(2i− n− 1)
2

.

Since they are equal we have finished the proof.
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Solution 3.72. Let xn+1 = x1 and xn+2 = x2. Define

ai =
xi

xi+1
and bi = xi + xi+1 + xi+2, i ∈ {1, . . . , n}.

It is evident that
n∏

i=1

ai = 1,
n∑

i=1

bi = 3
n∑

i=1

xi = 3.

The inequality is equivalent to

n∑
i=1

ai

bi
≥ n2

3
.

Using the AM-GM inequality, we can deduce that

1
n

n∑
i=1

bi ≥ n
√

b1 · · · bn ⇔ 3
n
≥ n

√
b1 · · · bn ⇔ 1

n
√

b1 · · · bn

≥ n

3
.

On the other hand and using again the AM-GM inequality, we get

n∑
i=1

ai

bi
≥ n n

√
a1

b1
· · · an

bn
= n

n
√

a1 · · ·an

n
√

b1 · · · bn

=
n

n
√

b1 · · · bn

≥ n2

3
.

Solution 3.73. For any a positive real number, a + 1
a ≥ 2, with equality occurring

if and only if a = 1. Since the numbers ab, bc and ca are non-negative, we have

P (x)P
(

1
x

)
= (ax2 + bx + c)

(
a

1
x2

+ b
1
x

+ c

)

= a2 + b2 + c2 + ab

(
x +

1
x

)
+ bc

(
x +

1
x

)
+ ca

(
x2 +

1
x2

)
≥ a2 + b2 + c2 + 2ab + 2bc + 2ca = (a + b + c)2 = P (1)2.

Equality takes place if and only if either x = 1 or ab = bc = ca = 0, which in view
of the condition a > 0 means that b = c = 0. Consequently, for any positive real
x we have

P (x)P
(

1
x

)
≥ (P (1))2

with equality if and only if either x = 1 or b = c = 0.
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Second solution. Using the Cauchy-Schwarz inequality we get

P (x)P
(

1
x

)
= (ax2 + bx + c)

(
a

1
x2

+ b
1
x

+ c

)

=
(
(
√

ax)2 + (
√

bx)2 + (
√

c)2
)⎛
⎝(√

a

x

)2

+

(√
b√
x

)2

+ (
√

c)2

⎞
⎠

≥
(
√

ax

√
a

x
+
√

bx

√
b√
x

+
√

c
√

c

)2

= (a + b + c)2 = (P (1))2.

Solution 3.74.

a2(b + c) + b2(c + a) + c2(a + b)
(a + b)(b + c)(c + a)

≥ 3
4

⇔ a2b + a2c + b2c + b2a + c2a + c2b

2abc + a2b + a2c + b2c + b2a + c2a + c2b
≥ 3

4
⇔ a2b + a2c + b2c + b2a + c2a + c2b− 6abc ≥ 0
⇔ [2, 1, 0] ≥ [1, 1, 1].

The last inequality follows after using Muirhead’s theorem.

Second solution. Use inequality (1.11) and the Cauchy-Schwarz inequality.

Solution 3.75. Applying the AM-GM inequality to each denominator, one obtains

1
1 + 2ab

+
1

1 + 2bc
+

1
1 + 2ca

≥ 1
1 + a2 + b2

+
1

1 + b2 + c2
+

1
1 + c2 + a2

.

Now, using inequality (1.11) leads us to

1
1 + a2 + b2

+
1

1 + b2 + c2
+

1
1 + c2 + a2

≥ (1 + 1 + 1)2

3 + 2(a2 + b2 + c2)
=

9
3 + 2 · 3 = 1.

Solution 3.76. The inequality is equivalent to each of the following ones:

x4 + y4 + z4 + 3(x + y + z) ≥ −(x3z + x3y + y3x + y3z + z3y + z3x),

x3(x + y + z) + y3(x + y + z) + z3(x + y + z) + 3(x + y + z) ≥ 0,

(x + y + z)(x3 + y3 + z3 − 3xyz) ≥ 0.

Identity (1.9) shows us that the last inequality is equivalent to

1
2
(x + y + z)2((x − y)2 + (y − z)2 + (z − x)2) ≥ 0.
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Solution 3.77. Let O and I be the circumcenter and the incenter of the acute
triangle ABC, respectively. The points O, M , X are collinear and OCX and
OMC are similar right triangles. Hence we have

OC

OX
=

OM

OC
.

Since OC = R = OA, we have OA
OM = OX

OA . Hence OAM and OXA are similar, so
we have AM

AX = OM
R .

It now suffices to show that OM ≤ r. Let us compare the angles ∠OBM and
∠IBM . Since ABC is an acute triangle, O and I lie inside ABC. Now we have
∠OBM = π

2−∠A = 1
2 (∠A+∠B+∠C)−∠A = 1

2 (∠B+∠C−∠A) ≤ ∠B
2 = ∠IBM .

Similarly, we have ∠OCM ≤ ∠ICM . Thus the point O lies inside IBC, so we get
OM ≤ r.

Solution 3.78. Setting a = x2, b = y2, c = z2, the inequality is equivalent to

x6 + y6 + z6 ≥ x4yz + y4zx + z4xy.

This follows from Muirhead’s theorem since [6, 0, 0] ≥ [4, 1, 1].

Solution 3.79. Use the Cauchy-Schwarz inequality to see that
√

xy + z =
√

x
√

y +√
z
√

z ≤ √x + z
√

y + z =
√

xy + z(x + y + z) =
√

xy + z. Similarly,
√

yz + x ≤√
yz + x and

√
zx + y ≤ √zx + y. Therefore,

√
xy + z +

√
yz + x +

√
zx + y ≥ √xy +

√
yz +

√
zx + x + y + z.

Solution 3.80. Using Example 1.4.11, we have

a3 + b3 + c3 ≥ (a + b + c)(a2 + b2 + c2)
3

.

Now,

a3 + b3 + c3 ≥ a + b + c

3
(a2 + b2 + c2) ≥ 3

√
abc(ab + bc + ca) ≥ ab + bc + ca,

where we have used the AM-GM and the Cauchy-Schwarz inequalities.

Solution 3.81. Using Example 1.4.11, we get (a+b+c)(a2+b2+c2) ≤ 3(a3+b3+c3),
but by hypothesis a2 + b2 + c2 ≥ 3(a3 + b3 + c3), hence a+ b+ c ≤ 1. On the other
hand,

4(ab + bc + ca)− 1 ≥ a2 + b2 + c2 ≥ ab + bc + ca,

therefore 3(ab + bc + ca) ≥ 1. As

1 ≤ 3(ab + bc + ca) ≤ (a + b + c)2 ≤ 1,

we obtain a+b+c = 1. Consequently, a+b+c = 1 and 3(ab+bc+ca) = (a+b+c)2,
which implies a = b = c = 1

3 .
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Solution 3.82. The Cauchy-Schwarz inequality yields

(|a|+ |b|+ |c|)2 ≤ 3(a2 + b2 + c2) = 9.

Hence |a|+ |b|+ |c| ≤ 3. From the AM-GM inequality it follows that

a2 + b2 + c2 ≥ 3 3
√

(abc)2

or |abc| ≤ 1, which implies −abc ≤ 1. The requested inequality is then obtained
by summation.

Solution 3.83. Notice that

OA1

AA1
=

(OBC)
(ABC)

=
OB ·OC ·BC

4R1
· 4R

AB · AC ·BC
.

Now, we have to prove that

OB ·OC · BC + OA ·OB ·AB + OA ·OC · AC ≥ AB · AC ·BC.

We consider the complex coordinates O(0), A(a), B(b), C(c) and obtain

|b| · |c| · |b− c|+ |a| · |b| · |a− b|+ |a| · |c| · |c− a| ≥ |a− b| · |b− c| · |c− a|.
That is,

|b2c− c2b|+ |a2b− b2a|+ |c2a− a2c| ≥ |ab2 + bc2 + ca2 − a2b− b2c− c2a|,
which is obvious by the triangle inequality.

Solution 3.84. Let S = {i1, i1 + 1, . . . , j1, i2, i2 + 1, . . . , j2, . . . , ip, . . . , jp} be the
ordering of S, where jk < ik+1 for k = 1, 2, . . . , p−1. Take Sp = a1 +a2 + · · ·+ap,
S0 = 0. Then∑

i∈S

ai = Sjp − Sip−1 + Sjp−1 − Sip−1−1 + · · ·+ Sj1 − Si1−1

and ∑
1≤i≤j≤n

(ai + · · ·+ aj)2 =
∑

0≤i≤j≤n

(Si − Sj)2.

It suffices to prove an inequality with the following form:

(x1 − x2 + · · ·+ (−1)p+1xp)2 ≤
∑

1≤i<j≤p

(xj − xi)2 +
p∑

i=1

x2
i , (4.9)

because this means neglecting the same non-negative terms on the right-hand side
of the inequality. Thus inequality (4.9) reduces to

4
∑

1≤i≤j≤p
j−i even

xixj ≤ (p− 1)
p∑

i=1

x2
i .
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This can be obtained adding together inequalities with the form 4xixj ≤ 2(x2
i +x2

j),
i < j, j − i =even (for odd i, xi appears in such inequality

[
p−1
2

]
times, and for

even i, xi appears in such inequality
[

p
2

]− 1 times).

Solution 3.85. Let x = a+b+c, y = ab+bc+ca, z = abc. Then a2+b2+c2 = x2−2y,
a2b2+b2c2+c2a2 = y2−2xz, a2b2c2 = z2, and the inequality to be proved becomes
z2 +2(y2− 2xz)+4(x2− 2y)+8 ≥ 9y or z2 +2y2− 4xz +4x2− 17y+8 ≥ 0. Now,
from a2 + b2 + c2 ≥ ab + bc + ca = y we obtain x2 = a2 + b2 + c2 + 2y ≥ 3y.

Also,

a2b2 + b2c2 + c2a2 = (ab)2 + (bc)2 + (ca)2

≥ ab · ac + bc · ab + ac · bc
= (a + b + c)abc = xz,

and thus y2 = a2b2 + b2c2 + c2a2 + 2xz ≥ 3xz. Hence,

z2 + 2y2 − 4xz + 4x2 − 17y + 8 =
(
z − x

3

)2

+
8
9
(y − 3)2 +

10
9

(y2 − 3xz)

+
35
9

(x2 − 3y) ≥ 0,

as required.

Second solution. Expanding the left-hand side of the inequality we obtain the
equivalent inequality

(abc)2 + 2(a2b2 + b2c2 + c2a2) + 4(a2 + b2 + c2) + 8 ≥ 9(ab + bc + ca).

Since 3(a2+b2+c2) ≥ 3(ab+bc+ca) and 2(a2b2+b2c2+c2a2)+6 ≥ 4(ab+bc+ca)
(for instance, 2a2b2 + 2 ≥ 4

√
a2b2 = 4ab), it is enough to prove that

(abc)2 + a2 + b2 + c2 + 2 ≥ 2(ab + bc + ca).

Part (i) of Exercise 1.90 tells us that it is enough to prove that (abc)2 + 2 ≥
3 3
√

a2b2c2, but this follows from the AM-GM inequality.

Solution 3.86. Let us write

3
3
√

3
3

√
1

abc
+ 6(a + b + c) =

3
3
√

3
3

√
1 + 6a2bc + 6b2ac + 6c2ab

abc

=
3
3
√

3
3

√
1 + 3ab(ac + bc) + 3bc(ba + ca) + 3ca(ab + bc)

abc
,

and consider the condition ab + bc + ca = 1 to obtain

3
3
√

3
3

√
1 + 3ab− 3(ab)2 + 3bc− 3(bc)2 + 3ca− 3(ca)2

abc

=
3
3
√

3
3

√
4− 3((ab)2 + (bc)2 + (ca)2)

abc
.
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It is easy to see that 3((ab)2 + (bc)2 + (ac)2) ≥ (ab + bc + ac)2 (use the Cauchy-
Schwarz inequality). Then, it is enough to prove that

3
3
√

3
3

√
3

abc
≤ 1

abc
,

which is equivalent to (abc)2 ≤ 1
27 . But this last inequality follows from the AM-

GM inequality,

(abc)2 = (ab)(bc)(ca) ≤
(

ab + bc + ca

3

)3

=
1
27

.

The equality holds if and only if a = b = c = 1√
3
.

Solution 3.87. Using symmetry, it suffices to prove that t1 < t2 + t3. We have
n∑

i=1

ti

n∑
i=1

1
ti

= n +
∑

1≤i<j≤n

(
ti
tj

+
tj
ti

)

= n + t1

(
1
t2

+
1
t3

)
+

1
t1

(t2 + t3) +
∑

(i,j) �=(1,2),(1,3)

(
ti
tj

+
tj
ti

)
.

Using the AM-GM inequality we get(
1
t2

+
1
t3

)
≥ 2√

t2t3
, t2 + t3 ≥ 2

√
t2t3 and

ti
tj

+
tj
ti
≥ 2 for all i, j.

Thus, setting a = t1/
√

t2t3 > 0 and using the hypothesis, we arrive at

n2 + 1 >

n∑
i=1

ti

n∑
i=1

1
ti
≥ n + 2

t1√
t2t3

+ 2
√

t2t3
t1

+ 2
[
n2 − n

2
− 2

]
= 2a +

2
a

+ n2− 4.

Hence 2a + 2
a − 5 < 0, which implies 1/2 < a = t1/

√
t2t3 < 2. So t1 < 2

√
t2t3, and

one more application of the AM-GM inequality yields t1 < 2
√

t2t3 ≤ t2 + t3, as
needed.

Solution 3.88. Note that 1 + b− c = a + b + c + b− c = a + 2b ≥ 0. Then

a
3
√

1 + b− c ≤ a

(
1 + 1 + (1 + b− c)

3

)
= a +

ab− ac

3
.

Similarly,

b 3
√

1 + c− a ≤ b +
bc− ba

3

c
3
√

1 + a− b ≤ c +
ca− cb

3
.

Adding these three inequalities, we get

a 3
√

1 + b− c + b 3
√

1 + c− a + c 3
√

1 + a− b ≤ a + b + c = 1.
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Solution 3.89. If any of the numbers is zero or if an odd number of them are
negative, then x1x2 · · ·x6 ≤ 0 and the inequality follows.

Therefore, it can only be 2 or 4 negative numbers between the numbers
in the inequality. Suppose that neither of them are zero and that there are 2
negative numbers (in the other case, change the signs of all numbers). If yi = |xi|,
then it is clear that y2

1 + y2
2 + · · · + y2

6 = 6, y1 + y2 = y3 + · · · + y6 and that
x1x2 · · ·x6 = y1y2 · · · y6.

From the AM-GM inequality we get

y1y2 ≤
(

y1 + y2

2

)2

= A2.

Also, the AM-GM inequality yields

y3y4y5y6 ≤
(

y3 + y4 + y5 + y6

4

)4

=
(

y1 + y2

4

)4

=
1
24

A4.

Therefore, y1y2 · · · y6 ≤ 1
24 A6.

On the other hand, the Cauchy-Schwarz inequality implies that

2(y2
1 + y2

2) ≥ (y1 + y2)2 = 4A2

4(y2
3 + y2

4 + y2
5 + y2

6) ≥ (y3 + y4 + y5 + y6)2 = 4A2.

Thus, 6 = y2
1 + y2

2 + · · · + y2
6 ≥ 2A2 + A2 = 3A2 and then y1y2 · · · y6 ≤ 1

24 A6 ≤
23

24 = 1
2 .

Solution 3.90. Use the Cauchy-Schwarz inequality with (1, 1, 1) and (a
b , b

c , c
a ) to

obtain

(12 + 12 + 12)
(

a2

b2
+

b2

c2
+

c2

a2

)
≥

(
a

b
+

b

c
+

c

a

)2

.

The AM-GM inequality leads us to a
b + b

c + c
a ≥ 3 3

√
abc
bca = 3, then

(
a2

b2
+

b2

c2
+

c2

a2

)
≥

(
a

b
+

b

c
+

c

a

)
.

Similarly, a
c + b

a + c
b ≥ 3 3

√
abc
bca = 3. Therefore,

a2

b2
+

b2

c2
+

c2

a2
+

a

c
+

b

a
+

c

b
≥ 3 +

a

b
+

b

c
+

c

a
.

Adding a
c + b

a + c
b to both sides yields the result.
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Solution 3.91. Note that

a2 + 2
2

=
(a2 − a + 1) + (a + 1)

2
≥

√
(a2 − a + 1)(a + 1) =

√
1 + a3.

After substituting in the given inequality, we need to prove that

a2

(a2 + 2)(b2 + 2)
+

b2

(b2 + 2)(c2 + 2)
+

c2

(c2 + 2)(a2 + 2)
≥ 1

3
.

Set x = a2, y = b2, z = c2, then xyz = 64 and

x

(x + 2)(y + 2)
+

y

(y + 2)(z + 2)
+

z

(z + 2)(x + 2)
≥ 1

3

if and only if

3[x(z + 2) + y(x + 2) + z(y + 2)] ≥ (x + 2)(y + 2)(z + 2).

Now, 3(xy + yz + zx) + 6(x + y + z) ≥ xyz + 2(xy + yz + zx) + 4(x + y + z) + 8
if and only if xy + yz + zx + 2(x + y + z) ≥ xyz + 8 = 72, but using the AM-GM
inequality leads to x+ y + z ≥ 12 and xy + yz + zx ≥ 48, which finishes the proof.

Solution 3.92. Observe that

x5 − x2

x5 + y2 + z2
− x5 − x2

x3(x2 + y2 + z2)
=

x2(y2 + z2)(x3 − 1)2

x3(x5 + y2 + z2)(x2 + y2 + z2)
≥ 0.

Then ∑ x5 − x2

x5 + y2 + z2
≥

∑ x5 − x2

x3(x2 + y2 + z2)

=
1

x2 + y2 + z2

∑(
x2 − 1

x

)
≥ 1

x2 + y2 + z2

∑
(x2 − yz) ≥ 0.

The second inequality follows from the fact that xyz ≥ 1, that is, 1
x ≤ yz. The

last inequality follows from (1.8).

Second solution. First, note that

x5 − x2

x5 + y2 + z2
=

x5 + y2 + z2 − (x2 + y2 + z2)
x5 + y2 + z2

= 1− x2 + y2 + z2

x5 + y2 + z2
.

Now we need to prove that

1
x5 + y2 + z2

+
1

x5 + z2 + x2
+

1
x5 + x2 + y2

≤ 3
x2 + y2 + z2

.
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Using the Cauchy-Schwarz inequality we get

(x2 + y2 + z2)2 ≤ (x2 · x3 + y2 + z2)(x2 · 1
x3

+ y2 + z2)

and since xyz ≥ 1, then x2 · 1
x3 = 1

x ≤ yz, and we have that

(x2 + y2 + z2)2 ≤ (x5 + y2 + z2)(yz + y2 + z2)

therefore

∑ 1
x5 + y2 + z2

≤
∑ yz + y2 + z2

(x2 + y2 + z2)2
≤

∑ y2+z2

2 + y2 + z2

(x2 + y2 + z2)2

=
3

x2 + y2 + z2
.

Solution 3.93. Notice that

(1 + abc)
(

1
a(b + 1)

+
1

b(c + 1)
+

1
c(a + 1)

)
+ 3

=
1 + abc + ab + a

a(b + 1)
+

1 + abc + bc + b

b(c + 1)
+

1 + abc + ca + c

c(a + 1)

=
1 + a

a(b + 1)
+

b(c + 1)
(b + 1)

+
1 + b

b(c + 1)
+

c(a + 1)
(c + 1)

+
1 + c

c(a + 1)
+

a(b + 1)
(a + 1)

≥ 6.

The last inequality follows after using the AM-GM inequality for six numbers.

Solution 3.94. Let R be the circumradius of the triangle ABC. Since ∠BOC =
2∠A, ∠COA = 2∠B and ∠AOB = 2∠C, we have that

(ABC) = (BOC) + (COA) + (AOB) =
R2

2
(sin 2A + sin 2B + sin 2C)

≤ R2

2
3 sin

(
2A + 2B + 2C

3

)

=
R2

2
3 sin

(
2π

3

)
=

3
√

3R2

4
.

The inequality follows since the function sin x is concave in [0, π].
On the other hand, since BOC is isosceles, the perpendicular bisector OA′ of

BC is also the internal bisector of the angle ∠BOC, so that ∠BOA′ = ∠COA′ =
∠A; similarly ∠COB′ = ∠AOB′ = ∠B and ∠AOC′ = ∠BOC′ = ∠C. In the
triangle B′OC′ the altitude on the side B′C′ is R

2 and B′C′ = R
2 (tan B + tanC).
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Therefore, the area of the triangle B′OC′ is (B′OC′) = R2

8 (tan B + tanC). Simi-
larly, (C′OA′) = R2

8 (tan C + tanA) and (A′OB′) = R2

8 (tan A + tanB). Then,

(A′B′C′) = (B′OC′) + (C′OA′) + (A′OB′) =
R2

4
(tan A + tanB + tanC)

≥ R2

4
3 tan

(
A + B + C

3

)

=
R2

4
3 tan

(π

3

)
=

3
√

3R2

4
.

The inequality follows since the function tan x is convex in [0, π
2 ].

Hence,

(A′B′C′) ≥ 3
√

3R2

4
≥ (ABC).

Solution 3.95. First, note that a2+bc ≥ 2
√

a2bc = 2
√

ab
√

ca and similarly b2+ca ≥
2
√

bc
√

ab, c2 + ab ≥ 2
√

ca
√

bc; then it follows that

1
a2 + bc

+
1

b2 + ca
+

1
c2 + ab

≤ 1
2

(
1√

ab
√

ca
+

1√
bc
√

ab
+

1√
ca
√

bc

)
.

Now, using the Cauchy-Schwarz inequality in the following way

(
1√

ab
√

ca
+

1√
bc
√

ab
+

1√
ca
√

bc

)2

≤
(

1
ab

+
1
bc

+
1
ca

)(
1
ca

+
1
ab

+
1
bc

)
,

the result follows.

Solution 3.96. From the Cauchy-Schwarz inequality we get

∑
i�=j

ai

aj

∑
i�=j

aiaj ≥
⎛
⎝∑

i�=j

ai

⎞
⎠2

=

(
(n− 1)

n∑
i=1

ai

)2

= (n− 1)2A2.

On the other hand,

∑
i�=j

aiaj =

(
n∑

i=1

ai

)2

−
(

n∑
i=1

a2
i

)
= A2 −A.

Solution 3.97. Without loss of generality, take a1 ≤ · · · ≤ an. Let dk = ak+1 − ak

for k = 1, . . . , n. Then d = d1 + · · · + dn−1. For i < j we have that |ai − aj | =
aj − ai = di + · · ·+ dj−1. Then,
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s =
∑
i<j

|ai − aj | =
n∑

j=2

j−1∑
i=1

(di + · · ·+ dj−1)

=
n∑

j=2

(d1 + 2d2 + · · ·+ (j − 1)dj−1)

= (n− 1)d1 + (n− 2)2d2 + · · ·+ 1 · (n− 1)dn−1

=
n−1∑
k=1

k(n− k)dk.

Since k(n − k) ≥ (n − 1) (because (k − 1)(n − k − 1) ≥ 0) and 4k(n − k) ≤ n2

(from the AM-GM inequality), we obtain (n− 1)d ≤ s ≤ n2d
4 .

In order to see when the equality on the left holds, notice that k(n − k) =
(n− 1) ⇔ n(k − 1) = k2 − 1 ⇔ k = 1 or k = n − 1, so that (n − 1)d = s only if
d2 = · · · = dn−2 = 0, that is, a1 ≤ a2 = · · · = an−1 ≤ an.

For the second equality notice that 4k(n − k) = n2 ⇔ k = n − k. If n is
odd, the equality 4k(n − k) = n2 holds only when dk = 0 for all k, therefore
a1 = · · · = an = 0. If n is even, say n = 2k, then only dk can be different from
zero and then a1 = · · · = ak ≤ ak+1 = · · · = a2k.

Solution 3.98. Consider the polynomial P (t) = tb(t2−b2)+bc(b2−c2)+ct(c2−t2).
This satisfies the identities P (b) = P (c) = P (−b − c) = 0, therefore P (t) =
(b− c)(t− b)(t− c)(t + b + c), since the coefficient of t3 is (b− c). Hence∣∣ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)

∣∣ = |P (a)|
= |(b− c)(a− b)(a− c)(a + b + c)| .

The problem is to find the least number M such that the following inequality holds
for all numbers a, b, c:

|(a− c)(a− b)(b− c)(a + b + c)| ≤M(a2 + b2 + c2)2.

If (a, b, c) satisfies the inequality, then (λa, λb, λc) also satisfies it for any real
number λ. Therefore, we can assume, without loss of generality, that a2+b2+c2 =
1. In this way the problem becomes the search for the maximum value of P =
|(a− b)(a− c)(b− c)(a + b + c)| for real numbers a, b, c such that a2 +b2 +c2 = 1.

Note that

[3(a2 + b2 + c2)]2 = [2(a− b)2 + 2(a− c)(b− c) + (a + b + c)2]2

≥ 8 |(a− c)(b− c)| [2(a− b)2 + (a + b + c)2]

≥ 16
√

2 |(a− c)(b− c)(a− b)(a + b + c)|
= 16

√
2P

The two inequalities are obtained using the AM-GM inequality.
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Thus, P ≤ 9
16
√

2
, and the maximum value is 9

16
√

2
because the equality holds

with a = 3
√

3+
√

6
6
√

2
, b =

√
6

6
√

2
and c =

√
6−3

√
3

6
√

2
.

Solution 3.99. For a = 2, b = c = 1
2 and n ≥ 3, the inequality is not true.

If n = 1, the inequality becomes abc ≤ 1, which follows from 3
√

abc ≤ a+b+c
3 = 1.

For the case n = 2, let x = ab+bc+ca; now since a2+b2+c2 = (a+b+c)2−2(ab+bc+
ca) = 9−2x and x2 = (ab+bc+ca)2 ≥ 3(a2bc+ab2c+abc2) = 3abc(a+b+c) = 9abc,
the inequality is equivalent to abc(9− 2x) ≤ 3, but it will be enough to prove that
x2(9− 2x) ≤ 27. This last inequality is in turn equivalent (2x + 3)(x− 3)2 ≥ 0.

Solution 3.100. First, the AM-GM inequality leads us to ca + c + a ≥ 3 3
√

c2a2.
From this we get

(a + 1)(b + 1)2

3 3
√

c2a2 + 1
≥ (a + 1)(b + 1)2

ca + c + a + 1
=

(a + 1)(b + 1)2

(c + 1)(a + 1)
=

(b + 1)2

(c + 1)
.

Similarly for the other two terms of the sum; therefore

(a + 1)(b + 1)2

3 3
√

c2a2 + 1
+

(b + 1)(c + 1)2

3 3
√

a2b2 + 1
+

(c + 1)(a + 1)2

3 3
√

b2c2 + 1

≥ (b + 1)2

(c + 1)
+

(c + 1)2

(a + 1)
+

(a + 1)2

(b + 1)
.

Now, apply inequality (1.11).

Solution 3.101. Using Ravi’s transformation a = x + y, b = y + z, c = z + x, we
find that x + y + z = 3

2 and xyz ≤ (x+y+z
3 )3 = 1

8 . Moreover,

a2 + b2 + c2 +
4abc

3
=

(a2 + b2 + c2)(a + b + c) + 4abc

3

=
2((y + z)2 + (z + x)2 + (x + y)2)(x + y + z) + 4(y + z)(z + x)(x + y)

3

=
4
3
((x + y + z)3 − xyz)

≥ 4
3

((
3
2

)3

− 1
8

)
=

13
3

.

Therefore the minimum value is 13
3 .

Solution 3.102. Apply Ravi’s transformation a = y + z, b = z + x, c = x + y, so
that the inequality can be rewritten as

(2z)4

(z + x)(2x)
+

(2x)4

(x + y)(2y)
+

(2y)4

(y + z)(2z)
≥ (y + z)(z + x) + (z + x)(x + y) + (x + y)(y + z).
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From inequality (1.11) and Exercise 1.27, we obtain

(2z)4

(z + x)(2x)
+

(2x)4

(x + y)(2y)
+

(2y)4

(y + z)(2z)
≥ 8(x2 + y2 + z2)2

x2 + y2 + z2 + xy + yz + zx

≥ 8(x2 + y2 + z2)2

2(x2 + y2 + z2)
.

On the other hand, (y + z)(z + x) + (z + x)(x + y) + (x + y)(y + z) = 3(xy +
yz + zx) + (x2 + y2 + z2); then it is enough to prove that 4(x2 + y2 + z2) ≥
3(xy+yz+zx)+(x2+y2+z2), which can be reduced to x2+y2+z2 ≥ xy+yz+zx.

Solution 3.103. The substitution x = a+b
a−b , y = b+c

b−c , z = c+a
c−a has the property

that xy + yz + zx = 1. Using the Cauchy-Schwarz inequality, (x + y + z)2 ≥
3(xy + yz + zx) = 3, therefore |x + y + z| ≥ √3 > 1.

Solution 3.104. It will be enough to consider the case x ≤ y ≤ z. Then x = y− a,
z = y + b with a, b ≥ 0.

On the one hand, we have xz = 1 − xy − yz = 1 − (y − a)y − y(y + b) =
1 − 2y2 + ay − by and on the other, xz = (y − a)(y + b) = y2 − ay + by − ab.
Adding both identities, we get 2xz = 1− y2− ab, so that 2xz− 1 = −y2− ab ≤ 0.
If 2xz = 1, then y = 0 and xz = 1, a contradiction, therefore xz < 1

2 .
The numbers x = y = 1

n and z = 1
2 (n− 1

n ) satisfy x ≤ y ≤ z and xy+yz+zx =
1. However, xz = 1

2n (n− 1
n ) = 1

2 − 1
2n2 can be as close as we wish to 1

2 , therefore,
the value 1

2 cannot be improved.

Solution 3.105. Suppose that a = [x] and that r = {x}. Then, the inequality is
equivalent to (

a + 2r

a
− a

a + 2r

)
+

(
2a + r

r
− r

2a + r

)
>

9
2
.

This inequality reduces to

2
( r

a
+

a

r

)
−

(
a

a + 2r
+

r

2a + r

)
>

5
2
.

But since r
a + a

r ≥ 2, it is enough to prove that

a

a + 2r
+

r

2a + r
<

3
2
.

But a + 2r ≥ a + r and 2a + r ≥ a + r; moreover, the two equalities cannot hold
at the same time (otherwise a = r = 0), therefore

a

a + 2r
+

r

2a + r
<

a

a + r
+

r

a + r
= 1 <

3
2
.



198 Solutions to Exercises and Problems

Solution 3.106. Inequality (1.11) shows that

a + b + c ≥ 1
a

+
1
b

+
1
c
≥ 32

a + b + c
,

so that a+b+c
3 ≥ 3

a+b+c . Thus, it is enough to prove that a + b + c ≥ 3
abc .

Since (x + y + z)2 ≥ 3(xy + yz + zx), we have

(a + b + c)2 ≥
(

1
a

+
1
b

+
1
c

)2

≥ 3
(

1
ab

+
1
bc

+
1
ca

)
=

3
abc

(a + b + c),

and from here it is easy to conclude the proof.

Solution 3.107. By means of the Cauchy-Schwarz inequality we get

(a + b + 1)(a + b + c2) ≥ (a + b + c)2.

Then

a + b + c2

(a + b + c)2
+

a2 + b + c

(a + b + c)2
+

a + b2 + c

(a + b + c)2

≥ 1
a + b + 1

+
1

b + c + 1
+

1
c + a + 1

≥ 1.

Therefore,

2(a + b + c) + (a2 + b2 + c2) ≥ (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca),

and the result follows.

Solution 3.108. For an interior point P of ABC, consider the point Q on the
perpendicular bisector of BC satisfying AQ = AP . Let S be the intersection
of BP with the tangent to the circle at Q. Then, SP + PC ≥ SC, therefore
BP + PC = BS + SP + PC ≥ BS + SC.

On the other hand, BS + SC ≥ BQ + QC, then BP + PC is minimum if
P = Q.

Let T be the midpoint of MN . Since the triangle AMQ is isosceles and MT
is one of its altitudes, then MT = ZQ where Z is the foot of the altitude of Q
over AB. Then MN + BQ + QC = 2(MT + QC) = 2(ZQ + QC) is minimum
when Z, Q, C are collinear and this means CZ is the altitude. By symmetry, BQ
should be also an altitude and then P is the orthocenter.

Solution 3.109. Let H be the orthocenter of the triangle MNP , and let A′, B′, C′

be the projections of H on BC, CA, AB, respectively. Since the triangle MNP
is acute, H belongs to the interior of the triangle MNP ; hence, it belongs to the
interior of the triangle ABC too, and therefore

x ≤ HA′ + HB′ + HC′ ≤ HM + HN + HP ≤ 2X.
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The second inequality is evident, the other two will be presented as the following
two lemmas.

Lemma 1. If H is an interior point or belongs to the sides of a triangle ABC,
and if A′, B′, C′ are its projections on BC, CA, AB, respectively, then x ≤
HA′ + HB′ + HC′, where x is the length of the shortest altitude of ABC.

Proof.

HA′ + HB′ + HC′

x
≥ HA′

ha
+

HB′

hb
+

HC′

hc
=

(BHC)
(ABC)

+
(CHA)
(ABC)

+
(AHB)
(ABC)

= 1.

�

Lemma 2. If MNP is an acute triangle and H is its orthocenter, then HM +HN+
HP ≤ 2X , where X is the length of the largest altitude of the triangle MNP .

Proof. Suppose that ∠M ≤ ∠N ≤ ∠P , then NP ≤ PM ≤ MN and so it happens
that X is equal to the altitude MM ′. We need to prove that HM + HN + HP ≤
2MM ′ = 2(HM + HM ′) or, equivalently, that HN + HP ≤ HM + 2HM ′. �

Let H ′ be the symmetric point of H with respect to NP ; since MNH ′P is
a cyclic quadrilateral, Ptolemy’s theorem tells us that

H ′M ·NP = H ′N ·MP + H ′P ·MN ≥ H ′N ·NP + H ′P ·NP,

and then we get H ′N + H ′P ≤ H ′M = HM + 2HM ′.

Solution 3.110. Without loss of generality, we can suppose that x ≤ y ≤ z. Then
x + y ≤ z + x ≤ y + z, xy ≤ zx ≤ yz, 2z2(x + y) ≥ 2y2(z + x) ≥ 2x2(y + z),

1√
2z2(x+y)

≤ 1√
2y2(z+x)

≤ 1√
2x2(y+z)

. If we resort to the rearrangement inequality

and apply it twice, we have

∑ 2yz√
2x2(y + z)

≥
∑ xy + zx√

2x2(y + z)
.

Now, adding
∑

2x2√
2x2(y+z)

to both sides of the last inequality, we obtain

∑ 2x2 + 2yz√
2x2(y + z)

≥
∑ 2x2 + xy + zx√

2x2(y + z)

=
∑ 2x2 + x(y + z)√

2x2(y + z)

≥
∑ 2

√
2x3(y + z)√
2x2(y + z)

= 2(
√

x +
√

y +
√

z) = 2.
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Second solution. First, note that

x2 + yz√
2x2(y + z)

=
x2 − x(y + z) + yz√

2x2(y + z)
+

x(y + z)√
2x2(y + z)

=
(x− y)(x − z)√

2x2(y + z)
+

√
y + z

2

≥ (x− y)(x − z)√
2x2(y + z)

+
√

y +
√

z

2
.

Similarly for the other two elements of the sum; then∑ x2 + yz√
2x2(y + z)

≥
∑ (x− y)(x − z)√

2x2(y + z)
+
√

x +
√

y +
√

z.

Then, it is enough to prove that

(x− y)(x − z)√
2x2(y + z)

+
(y − z)(y − x)√

2y2(z + x)
+

(z − x)(z − y)√
2z2(x + y)

≥ 0.

Without loss of generality, suppose that x ≥ y ≥ z. Then (x−y)(x−z)√
2x2(y+z)

≥ 0, and

(y − z)(y − x)√
2y2(z + x)

+
(z − x)(z − y)√

2z2(x + y)

=
(x− z)(y − z)√

2z2(x + y)
− (y − z)(x− y)√

2y2(z + x)
≥ (x− y)(y − z)√

2z2(x + y)
− (y − z)(x− y)√

2y2(z + x)

= (y − z)(x− y)

(
1√

2z2(x + y)
− 1√

2y2(z + x)

)
≥ 0.

The last inequality is a consequence of having y2(z+x) = y2z+y2x ≥ yz2+z2x =
z2(x + y).

Solution 3.111. Inequality (1.11) leads to

a2

2 + b + c2
+

b2

2 + c + a2
+

c2

2 + a + b2
≥ (a + b + c)2

6 + a + b + c + a2 + b2 + c2
.

Then, we need to prove that 6+a+b+c+a2+b2+c2 ≤ 12, but since a2+b2+c2 = 3,
it is enough to prove that a + b + c ≤ 3. But we also have (a + b + c)2 = a2 + b2 +
c2 + 2(ab + bc + ca) ≤ 3(a2 + b2 + c2) = 9.

The equality holds if and only if a = b = c = 1.

Solution 3.112. First, note that

1− a− bc

a + bc
=

2bc

1− b− c + bc
=

2bc

(1 − b)(1− c)
=

2bc

(c + a)(a + b)
.
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Then, the inequality is equivalent to

2bc

(c + a)(a + b)
+

2ca

(a + b)(b + c)
+

2ab

(b + c)(c + a)
≥ 3

2
.

This last inequality can be simplified to

4 [bc(b + c) + ca(c + a) + ab(a + b)] ≥ 3(a + b)(b + c)(c + a),

which in turn is equivalent to the inequality

ab + bc + ca ≥ 9abc.

But this inequality follows from (a + b + c)( 1
a + 1

b + 1
c ) ≥ 9.

Solution 3.113. Notice that (x
√

y + y
√

z + z
√

x)2 = x2y + y2z + z2x + 2(xy
√

yz +
yz
√

zx + zx
√

xy).
The AM-GM inequality implies that

xy
√

yz =
√

xyz
√

xy2 ≤ xyz + xy2

2
,

then

(x
√

y + y
√

z + z
√

x)2 ≤ x2y + y2z + z2x + xy2 + yz2 + zx2 + 3xyz.

Since (x + y)(y + z)(z + x) = x2y + y2z + z2x+xy2 + yz2 + zx2 + 2xyz, we obtain

(x
√

y + y
√

z + z
√

x)2 ≤ (x + y)(y + z)(z + x) + xyz

≤ (x + y)(y + z)(z + x) +
1
8
(x + y)(y + z)(z + x)

=
9
8
(x + y)(y + z)(z + x).

Therefore K2 ≥ 9
8 , and then K ≥ 3

2
√

2
. When x = y = z, the equality holds with

K = 3
2
√

2
, hence this is the minimum value.

Second solution. Apply the Cauchy-Schwarz inequality in the following way:

x
√

y + y
√

z + z
√

x =
√

x
√

xy +
√

y
√

yz +
√

z
√

zx ≤
√

(x + y + z)(xy + yz + zx).

After that, use the AM-GM inequality several times to produce

(x + y + z)
3

(xy + yz + zx)
3

≤ 3
√

xyz 3
√

x2y2z2 = xyz ≤ (x + y)
2

(y + z)
2

(z + x)
2

.
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Solution 3.114. The left-hand side of the inequality can be written as

a2b2cd+ab2c2d+abc2d2+a2bcd2+a2bc2d+ab2cd2 = abcd(ab+bc+cd+ac+ad+bd).

The AM-GM inequality implies that a2b2c2d2 ≤ (a2+b2+c2+d2

4 )4 =
(

1
4

)4, hence
abcd ≤ 1

16 . To see that the factor (ab + bc + cd + ac + ad + bd) is less than 3
2 we

can proceed in two forms.
The first way is to apply the Cauchy-Schwarz inequality to obtain

(ab + bc + cd + ac + ad + bd + ba + cb + dc + ca + da + db)

≤ (a2 + b2 + c2 + d2 + a2 + b2 + c2 + d2 + a2 + b2 + c2 + d2) = 3.

The second way consists in applying the AM-GM inequality as follows:

(ab + bc + cd + ac + ad + bd)

≤ a2 + b2

2
+

b2 + c2

2
+

c2 + d2

2
+

a2 + c2

2
+

a2 + d2

2
+

b2 + d2

2
=

3
2
.

Solution 3.115. (a) After some algebraic manipulation and some simplifications
we obtain

(1 + x + y)2 + (1 + y + z)2 + (1 + z + x)2

= 3 + 4(x + y + z) + 2(xy + yz + zx) + 2(x2 + y2 + z2).

Now, the AM-GM inequality implies that

(x + y + z) ≥ 3 3
√

xyz ≥ 3,

(xy + yz + zx) ≥ 3 3
√

x2y2z2 ≥ 3,

(x2 + y2 + z2) ≥ 3 3
√

x2y2z2 ≥ 3.

Then, (1 + x + y)2 + (1 + y + z)2 + (1 + z + x)2 ≥ 3 + 4 · 3 + 2 · 3 + 2 · 3 = 27.
The equality holds when x = y = z = 1.
(b) Again, after simplification, the inequality is equivalent to

3 + 4(x + y + z) + 2(xy + yz + zx) + 2(x2 + y2 + z2)

≤ 3(x2 + y2 + z2) + 6(xy + yz + zx)

and also to 3 + 4u ≤ u2 + 2v, where u = x + y + z ≥ 3 and v = xy + yz + zx ≥ 3.
But u ≥ 3 implies that (u − 2)2 ≥ 1, then (u− 2)2 + 2v ≥ 1 + 6 = 7.

The equality holds when u = 3 and v = 3, that is, when x = y = z = 1.

Solution 3.116. Notice that

1
1 + a2(b + c)

=
1

1 + a(ab + ac)
=

1
1 + a(3− bc)

=
1

3a + 1− abc
.
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The AM-GM inequality implies that 1 = ab+bc+ca
3 ≥ 3

√
a2b2c2, then abc ≤ 1. Thus

1
1 + a2(b + c)

=
1

3a + 1− abc
≤ 1

3a
.

Similarly, 1
1+b2(c+a) ≤ 1

3b and 1
1+c2(a+b) ≤ 1

3c . Therefore,

1
1 + a2(b + c)

+
1

1 + b2(c + a)
+

1
1 + c2(a + b)

≤ 1
3a

+
1
3b

+
1
3c

=
bc + ca + ab

3abc
=

1
abc

.

Solution 3.117. The inequality is equivalent to

(a + b + c)
(

1
a + b

+
1

b + c
+

1
c + a

)
≥ k + (a + b + c)k = (a + b + c + 1)k.

On the other hand, using the condition a + b + c = ab + bc + ca, we have

1
a + b

+
1

b + c
+

1
c + a

=
a2 + b2 + c2 + 3(ab + bc + ca)

(a + b)(b + c)(c + a)

=
a2 + b2 + c2 + 2(ab + bc + ca) + (ab + bc + ca)

(a + b)(b + c)(c + a)

=
(a + b + c)(a + b + c + 1)

(a + b + c)2 − abc
.

Hence

(a + b + c)
(a + b + c + 1)

(
1

a + b
+

1
b + c

+
1

c + a

)
=

(a + b + c)2

(a + b + c)2 − abc
≥ 1,

and since the equality holds if and only if abc = 0, we can conclude that k = 1 is
the maximum value.

Solution 3.118. Multiplying both sides of the inequality by the factor (a + b + c),
we get the equivalent inequality

9(a + b + c)(a2 + b2 + c2) + 27abc ≥ 4(a + b + c)3,

which in turn is equivalent to the inequality

5(a3 + b3 + c3) + 3abc ≥ 3(ab(a + b) + ac(a + c) + bc(b + c)).

By the Schür inequality with n = 1, Exercise 1.83, it follows that

a3 + b3 + c3 + 3abc ≥ ab(a + b) + bc(b + c) + ca(c + a),

and the Muirhead’s inequality tells us that 2[3, 0, 0] ≥ 2[2, 1, 0], which is equivalent
to

4(a3 + b3 + c3) ≥ 2(ab(a + b) + ac(a + c) + bc(b + c)).

Adding these last inequalities, we get the result.
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Solution 3.119. Lemma. If a, b > 0, then 1
(a−b)2 + 1

a2 + 1
b2 ≥ 4

ab .

Proof. In order to prove the lemma notice that 1
(a−b)2 + 1

a2 + 1
b2 − 4

ab = (a2+b2−3ab)2

a2b2(a−b)2 .
�

Without loss of generality, z = min{x, y, z}; now apply the lemma with
a = (x− z) and b = (y − z), to obtain

1
(x− y)2

+
1

(y − z)2
+

1
(z − x)2

≥ 4
(x− z)(y − z)

.

Now, it is left to prove that xy + yz + zx ≥ (x − z)(y − z); but this is equivalent
to 2z(y + x) ≥ z2, which is evident.

Solution 3.120. In the case of part (i), there are several ways to prove it.
First form. We can prove that

x2

(x− 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
− 1 =

(yz + zx + xy − 3)2

(x− 1)2(y − 1)2(z − 1)2
.

Second form. With the substitution a = x
x−1 , b = y

y−1 , c = z
z−1 , the inequality

is equivalent to a2 + b2 + c2 ≥ 1, and the condition xyz = 1 is equivalent to
abc = (a − 1)(b − 1)(c − 1) or (ab + bc + ca) + 1 = a + b + c. With the previous
identities we can obtain

a2 + b2 + c2 = (a + b + c)2 − 2(ab + bc + ca)

= (a + b + c)2 − 2(a + b + c− 1)

= (a + b + c− 1)2 + 1,

therefore
a2 + b2 + c2 = (a + b + c− 1)2 + 1.

Part (ii) can be proved depending on how we prove part (i). For instance, if
we used the second form, the equality holds when a2+b2+c2 = 1 and a+b+c = 1.
(In the first form, the equality holds when xyz = 1 and xy + yz + zx = 3). From
the equations we can cancel out one variable, for instance c (and since c = 1−a−b,
if we find that a and b are rational numbers, then c will be a rational number too),
to obtain a2 + b2 + ab− a− b = 0, an identity that we can think of as a quadratic

equation in the variable b with roots b = 1−a±
√

(1−a)(1+3a)

2 , which will be rational
numbers if (1 − a) and (1 + 3a) are squares of rational numbers. If a = k

m , then
m− k and m + 3k are squares of integers, for instance, if m = (k − 1)2 + k, then
m − k = (k − 1)2 and m + 3k = (k + 1)2. Thus, the rational numbers a = k

m ,
b = m−k+k2−1

2m and c = 1−a−b, when k varies in the integer numbers, are rational
numbers where the equality holds. There are some exceptions, that is, when k = 0,
1, since the values a = 0 or 1 are not allowed.



Notation

We use the following standard notation:

N the positive integers (natural numbers)
R the real numbers
R+ the positive real numbers
⇔ iff, if and only if
⇒ implies
a ∈ A the element a belongs to the set A
A ⊂ B A is a subset of B
|x| the absolute value of the real number x
{x} the fractional part of the real number x
[x] the integer part of the real number x
[a, b] the set of real numbers x such that a ≤ x ≤ b
(a, b) the set of real numbers x such that a < x < b
f : [a, b]→ R the function f defined in [a, b] with values in R

f ′(x) the derivative of the function f(x)
f ′′(x) the second derivative of the function f(x)
det A the determinant of the matrix A∑n

i=1 ai the sum a1 + a2 + · · ·+ an∏n
i=1 ai the product a1 · a2 · · · an∏
i�=j ai the product of all a1, a2, . . . , an except aj

max{a, b, . . .} the maximum value between a, b, . . .
min{a, b, . . .} the minimum value between a, b, . . .√

x the square root of the positive real number x
n
√

x the n-th root of the real number x
exp x = ex the exponential function∑

cyclic f(a, b, . . . ) represents the sum of the function f evaluated
in all cyclic permutations of the variables a, b, . . .
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We use the following notation for the section of Muirhead’s theorem:∑
!
F (x1, . . . , xn) the sum of the n! terms obtained from evaluating F in

all possible permutations of (x1, . . . , xn)
(b) ≺ (a) (b) is majorized by (a)
[b] ≤ [a] 1

n!

∑
!
xb1

1 xb2
2 · · ·xbn

n ≤ 1
n!

∑
!
xa1

1 xa2
2 · · ·xan

n .

We use the following geometric notation:

A, B, C the vertices of the triangle ABC
a, b, c the lengths of the sides of the triangle ABC
A′, B′, C′ the midpoints of the sides BC, CA and AB
∠ABC the angle ABC
∠A the angle in the vertex A or the measure of the angle A
(ABC) the area of the triangle ABC
(ABCD...) the area of the polygon ABCD...
ma, mb, mc the lengths of the medians of the triangle ABC
ha, hb, hc the lengths of the altitudes of the triangle ABC
la, lb, lc the lengths of the internal bisectors of the triangle ABC
s the semiperimeter of the triangle ABC
r the inradius of the triangle ABC, the radius of the incircle
R the circumradius of the triangle ABC, the radius of the

circumcircle
I, O, H, G the incenter, circumcenter, orthocenter and centroid

of the triangle ABC
Ia, Ib, Ic the centers of the excircles of the triangle ABC.

We use the following notation for reference of problems:

IMO International Mathematical Olympiad
APMO Asian Pacific Mathematical Olympiad
(country, year) problem corresponding to the mathematical olympiad

celebrated in that country, in that year, in some stage.
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Matemáticas, Instituto de Matemáticas, UNAM, 2002.
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Concavity
Geometric interpretation, 25

Convexity
Geometric interpretation, 25

discrepancy, 46

Erdős-Mordell
theorem, 81–84, 88

Euler
theorem, 66

Fermat
point, 90, 92

Function
concave, 23
convex, 20
quadratic, 4

Greater than, 1

Inequality
arithmetic mean–geometric

mean, 9, 47
weighted, 27

Bernoulli, 31
Cauchy-Schwarz, 15, 35

Engel form, 35
Euler, 67
Hölder, 27

generalized, 32
harmonic mean–geometric

mean, 8
helpful, 34

Jensen, 21
Leibniz, 69
Minkowski, 28
Nesbitt, 16, 37, 65
Popoviciu, 32
power mean, 32
Ptolemy, 53
quadratic mean–arithmetic

mean, 19, 36
rearrangement, 13
Schur, 31
Tchebyshev, 18
triangle, 3

general form, 3
Young, 27

Leibniz
theorem, 68

Mean
arithmetic, 7, 9, 19, 31
geometric, 7, 9, 19, 31
harmonic, 8, 19
power, 32
quadratic, 19

Muirhead
theorem, 43, 44

Ortic
triangle, 95, 98

Pappus
theorem, 80

Pedal
triangle, 99
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Problem
Fagnano, 88, 94
Fermat-Steiner, 88
Heron, 92

with a circle, 93
Pompeiu, 53

Real line, 1

Smaller than, 1
Smaller than or equal to, 2
Solution

Fagnano problem
Fejér L., 96
Schwarz H., 96

Fermat-Steiner problem
Hofmann-Gallai, 91
Steiner, 92, 94
Torricelli, 88, 90

Transformation
Ravi, 55, 73

Viviani
lemma, 88, 90




